加强数形结合数学思想的培养。
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线