高一数学函数专项练习及答案
- 格式:docx
- 大小:20.01 KB
- 文档页数:5
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。
答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。
答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。
精心整理《函数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-+-2为34、 求实数5⑴y =⑸y =⑼y =6三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =261y x x =--789⑴1=y ⑶x f (。
A 10 A 1112 (A)02x << (B)0x <或2x > (C)1x <或3x > (D)11x -<<13、函数()f x =A 、[2,2]-B 、(2,2)-C 、(,2)(2,)-∞-+∞D 、{2,2}-14、函数1()(0)f x x x x=+≠是()A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =16、已知函数的定义域是,则的定义域为。
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学必修一函数练习题含答案1.函数的定义域为_______________。
2.函数$f(x)=x-x^2$,$(x\in[-1,1])$的值域为_______________。
3.函数$f(x)=\begin{cases}x+2.& x\leq -1\\x^2+1.& x>-1\end{cases}$,则$f(f(-2))=$_______________。
4.函数$f(x)=\begin{cases}x。
& (-1<x<2)\\2x。
& (x\geq 2)\end{cases}$,若$f(x)=3$,则$x=$_______________。
5.已知函数$f(x)=x+bx+c$的对称轴为$x=2$,则$f(4),f(2),f(-2)$由小到大的顺序为_______________。
6.已知函数$f(x)=mx+3(m-2)x-1$在区间$(-\infty,3]$上是单调减函数,则实数$m$的取值范围是_______________。
7.已知$f(x)=2x+3$,$g(x+2)=f(x)$,则$g(x)=$_______________。
8.已知$f(x)=x+ax+bx-8$,若$f(-2)=10$,则$f(2)=$_______________。
9.函数$f(x)$为奇函数,当$x\geq 0$时,$f(x)=x(2-x)$,则当$x<0$时,$f(x)$的解析式为_______________。
10.下列函数:①$y=x$与$y=\frac{5}{3}x$;②$y=\sqrt{x}$与$y=x$;③$y=x^2$与$y=x$;④$y=x+1\cdot x-1$与$y=(x+1)(x-1)$中,图象完全相同的一组是(填正确序号)_______________。
11.若函数$f(x)$的图象关于原点对称,且在$(0,+\infty)$上是增函数,$f(-3)=-1$,则不等式$xf(x)<0$的解集是_______________。
高一函数测试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则实数m 的取值范围是()。
A. m>4B. m<4C. m≥4D. m≤42. 函数y=x^3-3x的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-1, +∞)3. 函数y=x^2-6x+10的最小值是()。
A. 4C. 6D. 74. 若函数f(x)=x^2-4x+3,则f(1)的值为()。
A. 0B. 1C. 2D. 35. 函数y=x^2-6x+8的图象的对称轴是()。
A. x=-3B. x=3C. x=-2D. x=26. 函数y=x^3-3x的零点个数是()。
A. 1C. 3D. 47. 函数y=x^2-4x+4的值域是()。
A. [0, +∞)B. [1, +∞)C. [2, +∞)D. [3, +∞)8. 函数y=x^2-6x+10的顶点坐标是()。
A. (3, 1)B. (3, -1)C. (2, 4)D. (2, 5)9. 若函数f(x)=2x-3,则f(2)的值为()。
A. 1C. 3D. 410. 函数y=x^2-4x+3的图象与y轴的交点坐标是()。
A. (0, 3)B. (0, -1)C. (0, 1)D. (0, 4)二、填空题(每题4分,共20分)11. 函数y=x^2-4x+3的顶点坐标是______。
12. 函数y=x^3-3x的导数为______。
13. 函数y=x^2-6x+10与x轴的交点坐标是______。
14. 函数y=x^2-4x+4的对称轴是______。
15. 函数y=x^2-6x+8的最小值是______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^2-4x+3,求f(-1)的值。
17. 已知函数f(x)=x^2-6x+10,求函数的单调递减区间。
18. 已知函数f(x)=x^2-4x+4,求函数的零点。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
函数与基本初等函数一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈R B .y =sin x ,x ∈RC .y =x ,x ∈RD .y =(12)x ,x ∈R2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2x B.12x C .log 12x D .2x -23.已知函数f (x )=ax 3+bx 2+c 是奇函数,则( )A .b =c =0B .a =0C .b =0,a ≠0D .c =0 4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为( )A .f (x )=x 2-4x +4B .f (x )=x 2-4x +5C .f (x )=x 2-4x -5D .f (x )=x 2+4x +55.函数f (x )=3x 21-x+lg(3x +1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13) D .(-∞,-13) 6.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数7.设奇函数f (x )在(0,+∞)内为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)8.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12b ,(12)c =log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c二、填空题9.函数y =log 12x +2的定义域是____________.10.已知函数f (x )=a x +b 的图象经过点(-2,134),其反函数y =f -1(x )的图象经过点(5,1),则f (x )的解析式是________.11.函数f (x )=ln 1+ax1+2x(a ≠2)为奇函数,则实数a 等于________.12.方程x 2-2ax +4=0的两根均大于1,则实数a 的范围是________.13.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.14.函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是________. 三、解答题15.设f (x )是奇函数,g (x )是偶函数,并且f (x )-g (x )=x 2-x ,求f (x ),g (x ).16.设不等式2(log 12x )2+9(log 12x )+9≤0的解集为M ,求当x ∈M 时,函数f (x )=(log 2x 2)(log 2x8)的最大、最小值.17.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.18.设函数f (x )=ax 2+1bx +c是奇函数(a ,b ,c 都是整数),且f (1)=2,f (2)<3.(1)求a ,b ,c 的值;(2)当x <0,f (x )的单调性如何?用单调性定义证明你的结论.参考答案1 B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,只是减函数;故选A.2 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以,a =2,故f (x )=log 2x ,选A.3 ∵f (x )是奇函数,∴f (0)=0,∴c =0.∴-ax 3-bx 2=-ax 3+bx 2,∴b =0,故选A. 4 因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x );当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5. 5 ⎩⎨⎧1-x >03x +1>0,解得-13<x<1.故选B.6 令x =0,得f (0)=2f (0)+1,f (0)=-1,所以f (x -x )=f (x )+f (-x )+1=-1,而f (x )+f (-x )+1+1=0,即 f (x )+1=-,所以f (x )+1为奇函数,故选C. 7因为f (x )是奇函数,所以f (-x )=-f (x ),于是不等式变为2f (x )x<0,根据函数的单调性和奇偶性,画出函数的示意图(图略),可知不等式2f (x )x <0的解集为(-1,0)∪(0,1). 8如下图:∴a <b <c . A9 (0,4] 10 f (x )=2x +3 11依题意有f (-x )+f (x )=ln1-ax1-2x+ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax 1+2x =1,故1-a 2x 2=1-4x 2,解得a 2=4,但a ≠2,故a =-2.12 解法一:利用韦达定理,设方程x 2-2ax +4=0的两根为x 1、x 2,则⎩⎨⎧(x 1-1)(x 2-1)>0,(x 1-1)+(x 2-1)>0,解之得2≤a <52. 13 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称.∴2a +ab =0⇒b =-2,∴f (x )=-2x 2+2a 2,且值域为(-∞,4],∴2a 2=4,∴f (x )=-2x 2+4. -2x 2+414设g (x )=3x 2-ax +5,已知⎩⎨⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.15 f (x )为奇函数,∴f (-x )=-f (x );g (x )为偶数,∴g (-x )=g (x ).f (x )-g (x )=x 2-x∴f (-x )-g (-x )=x 2+x从而-f (x )-g (x )=x 2+x ,即f (x )+g (x )=-x 2-x ,16 ∵2(log 12x )2+9(log 12x )+9≤0,∴(2log 12x +3)(log 12x +3)≤0.∴-3≤log 12x ≤-32.即log 12(12)-3≤log 12x ≤log 12(12)-32∴(12)-32≤x ≤(12)-3,即22≤x ≤8.从而M =.又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴32≤log 2x ≤3.∴当log 2x =2,即x =4时y min =-1;当log 2x =3,即x =8时,y max =0.⎩⎨⎧ f (x )-g (x )=x 2-x f (x )+g (x )=-x 2-x ⇒⎩⎨⎧f (x )=-xg (x )=-x 2 17 (1)求f (x )的解析式;(2)若g (x )=f (x )·x +ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.(1)设f (x )图象上任意一点的坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上.∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x .(2)g (x )=(x +1x )·x +ax ,即g (x )=x 2+ax +1.g (x )在(0,2]上递减⇒-a 2≥2,∴a ≤-4.18 (1)由f (x )=ax 2+1bx +c是奇函数,得f (-x )=-f (x )对定义域内x 恒成立,则a (-x )2+1b (-x )+c =-ax 2+1bx +c ⇒-bx +c =-(bx +c )对定义域内x 恒成立,即c =0.又⎩⎨⎧f (1)=2f (2)<3⇒⎩⎪⎨⎪⎧a +1b =2 ①4a +12b <3 ②由①得a =2b -1代入②得2b -32b<0⇒0<b <32,又a ,b ,c 是整数,得b =a =1.(2)由(1)知,f (x )=x 2+1x =x +1x,当x <0,f (x )在(-∞,-1]上单调递增,在上单调递增.同理,可证f (x )在[-1,0)上单调递减.。
高一函数练习题及答案一、选择题1. 函数f(x) = 2x - 3的值域是()A. (-∞, 3)B. (-∞, +∞)C. (3, +∞)D. (-∞, 2)2. 已知函数y = 3x^2 + 2x - 1,当x = 1时,y的值是()A. 2B. 3C. 4D. 53. 若函数f(x) = x^2 - 4x + 3,求f(2)的值是()A. -1B. 1C. 3D. 54. 函数y = 1 / x的图象在第()象限。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知函数f(x) = x^2 + bx + c,若f(1) = 0,则b的值是()A. 0B. 1C. -1D. 2二、填空题6. 若函数f(x) = x^2 + 2x + 1,求f(x - 1)的表达式为______。
7. 已知函数y = 2x - 5,当y = 0时,x的值为______。
8. 若函数f(x) = 3x - 2,求f(x + 1)的值是______。
9. 已知函数y = 1 / (x - 1),当x = 2时,y的值为______。
10. 若函数f(x) = x^3 - 3x^2 + 2x,求f(1)的值是______。
三、解答题11. 已知函数f(x) = x^2 - 2x + 1,求f(x)的最小值。
12. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求f(x)的单调区间。
13. 已知函数f(x) = x + 1 / x,求f(x)的定义域。
14. 已知函数f(x) = x^2 + 2x + 1,求f(x)的对称轴。
15. 已知函数f(x) = x^2 - 4x + 4,求f(x)的顶点坐标。
答案:1. B2. C3. A4. D5. C6. f(x - 1) = (x - 1)^2 + 2(x - 1) + 1 = x^2 - 2x + 27. x = 2.58. f(x + 1) = 3(x + 1) - 2 = 3x + 3 - 2 = 3x + 19. y = 1 / (2 - 1) = 110. f(1) = 1^3 - 3 * 1^2 + 2 * 1 = 1 - 3 + 2 = 011. f(x) = (x - 1)^2,当x = 1时,f(x)的最小值为0。
高一数学函数专项练习及答案
高一数学函数专项练习及答案
一、选择题
1.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系. 当x=36 kPa时,y=108 g/m3,则y与x的函数解析式为()
A.y=3x(x0)
B.y=3x
C.y=13x(x0)
D.y=13x
[答案] A
2.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本日产手套量至少为()
A.200副
B.400副
C.600副
D.800副
[答案] D
[解析] 由10x-y=10x-(5x+4000)0,得x800.
3.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是()
A.甲比乙先出发
B.乙比甲跑的路程多
C.甲、乙两人的速度相同
D.甲先到达终点
[答案] D
[解析] 由图象知甲所用时间短,所以甲先到达终点.
4.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪比上一年增加20%;另外,每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么,将第n年企业付给工人的工资总额y(万元)表示成n的函数,其解析式为()
A.y=(3n+5)1.2n+2.4
B.y=81.2n+2.4n
C.y=(3n+8)1.2n+2.4
D.y=(3n+5)1.2n-1+2.4
[答案] A
5.(2013~2014潍坊高一检测)下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()
x45678910
y15171921232527
A.一次函数模型
B.二次函数模型
C.指数函数模型
D.双数函数模型
[答案] A
[解析] 由表知自变量x变化1个单位时,函数值y变化2个单位,所以为一次函数模型.
6.一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是下午18时他的体温又开始上升,直到半夜24时亮亮才感觉身上不那么发烫了.则下列各图能基本上反映出亮亮一天(0~24时)体温的变化情况的是()
[答案] C
[解析] 从0时到6时,体温上升,图象是上升的,排除选项A;从6时到12时,体温下降,图象是下降的,排除选项B;从12时到18时,体温上升,图象是上升的,排除选项D.
二、填空题
7.现测得(x,y)的.两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为拟合模型较好.
[答案] 甲
[解析] 代入x=3,可得甲y=10,
乙,y=8.显然选用甲作为拟合模型较好.
8.(2013~2014徐州高一检测)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg20.3010).
[答案] 4
[解析] 设至少要洗x次,则(1-34)x1100,
x1lg23.322,所以需4次.
9.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系为y=(116)t-a(a为常数)其图象如图.根据图中提供的信息,回答问题:
(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的关系式为________.
(2)据测定,当空气中每立方米的含药量降到0.25mg以下时,学生才可进入教室,那么从药物释放开始至少经过______小时,学生才能回到教室.
[答案] (1)y=10t0110116t-110 t110 (2)0.6
[解析] (1)设0110时,y=kt,
将(0.1,1)代入得k=10,
又将(0.1,1)代入y=(116)t-a中,得a=110,
y=10t 0110116t-110t110.
(2)令(116)t-1100.25得t0.6,t的最小值为0.6.
三、解答题
10.为了保护学生的视力,课桌椅子的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y 应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:第一套第二套
椅子高度x(cm)40.037.0
桌子高度y(cm)75.070.2
(1)请你确定y与x的函数关系式(不必写出x的取值范围).
(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么?
[解析] (1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数关系式为y=kx+b.
将符合条件的两套课桌椅的高度代入上述函数关系式,
得40k+b=75,37k+b=70.2,k=1.6,b=11.
y与x的函数关系式是y=1.6x+11.
(2)把x=42代入上述函数关系式中,
有y=1.642+11=78.2.
给出的这套桌椅是配套的.
[点评] 本题是应用一次函数模型的问题,利用待定系数法正确求出k,b是解题的关键.
11.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:时间t50110250
种植成本Q150108150
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.
Q=at+b,Q=at2+bt+c,Q=abt,Q=alogbt.
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.
[解析] (1)由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=abt,Q=alogbt中的任意一个进行描述时都应有a0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q=at2+bt+c进行描述.
以表格所提供的三组数据分别代入Q=at2+bt+c得到,150=2 500a+50b+c,108=12 100a+110b+c,150=62 500a+250b+c.解得a=1200,b=-32,c=4252.
所以,描述西红柿种植成本Q与上市时间t的变化关系的函数为Q=1200t2-32t+4252.
(2)当t=--3221200=150天时,西红柿种植成本最低为Q=12001502-32150+4252=100 (元/102kg).
12.某企业生产A,B两种产品,根据市场调查与与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A,B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
[解析] (1)设A,B两种产品分别投资x万元,x0,所获利润分别为f(x)万元、g(x)万元.
由题意可设f(x)=k1x,g(x)=k2x.
根据图象可解得f(x)=0.25x(x0).
g(x)=2x(x0).
(2)①由(1)得f(9)=2.25,g(9)=29=6.总利润y=8.25万元.
②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.
则y=14(18-x)+2x,018.
令x=t,t[0,32],
则y=14(-t2+8t+18)=-14(t-4)2+172.
当t=4时,ymax=172=8.5,此时x=16,18-x=2.
当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.
高一数学函数模型的应用实例专项练习就为大家分享到这里,希望大家可以认真掌握知识点。