高一数学30道数学函数题
- 格式:doc
- 大小:13.14 KB
- 文档页数:4
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x=,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学函数练习题一、单项选择题(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
) 1.已知π,02α⎛⎫∈- ⎪⎝⎭,且1cos(2π)2α-=,则=αsin ()A.23-B.21C.23±D.21±2.在△ABC 中,若a :b :c=12,则A :B :C 等于( )A.1:2:3B.2:3:1C.1:3:2D.3:1:2 3.1cos 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭那么sin θ等于( ) A.12B.2C.3D.2-4.在△ABC 中,cosAcosB>sinAsinB,则这个三角形是( ) A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.把y =sinx 的图像各个点的纵坐标伸长为原来的5倍,横坐标不变,所得到的图像的解析式是( ) A.y =5sinxB.y =15sinxC.y =sin5xD.y =sin 5x6.在△ABC 中,若a2+b2-c2<0,则△C 是( ) A.锐角B.直角C.钝角D.平角7.若1-cos2α=-sinα,则α是第 象限角 ( ) A.三B.四C.三或四D.一或二8.化简:cos (α-β)·cosβ-sin (α-β)·sinβ等于 ( ) A.sinαB.cosαC.1D.以上都不对9.求值:2tan22.5°1-tan222.5°等于( )A.3B.-3C.1D.-110.已知cos22α=sin α,则tan 2α等于 ( )A.2B.12C.1D.1311.已知角θ终边上一点坐标为(x)(x <0),则cos2θ=( ) A.14B.-14C.12D.-1212.已知角α的终边上的点P 坐标是(-3,4),则cos (2π-α)的值等于 ( ) A.-45B.45C.-35D.3513.2sin75°sin15°= ( ) A.12B.14C.-12D.-1414.已知函数f (x )=12log 1sin 0103x x x x xx ⎧>⎪⎪≤≤⎨⎪⎪<⎩,,,,则下列结论中,正确的是 ( )A.f (x )在区间(1,+∞)上是增函数B.f (x )在区间(-∞,1]上是增函数C.f (π2)=1D.f (2)=115.在△ABC 中,若a =4,b =3,∠C =30°,则△ABC 的面积为( )A.12B.6C.3D.3316.若x +1x =2sinθ(x >0),则θ等于 ( ) A.2kπ(k△Z )B.2kπ+π6(k△Z ) C.2kπ+π3(k△Z )D.2kπ+π2(k△Z )17.若sinx +cosx =13,则sin2x 等于 ( ) A.89B.-89C.23D.-2318.已知sinA ·tanA <0,则角A 所在的象限是 ( )A.第二象限B.第三象限C.第二或第三象限D.第四象限19.与1303°终边相同的角是 ( ) A.763°B.493°C.-137°D.-47°20.化简cos (π4+α)-sin (π4-α)的结果是( ) A.sinα B.cosα C.cosα+sinα D.0二、填空题21.在△ABC 中,若sin 2cos sin A B C ,则△ABC 的形状为 . 22.已知一个扇形半径为5cm ,圆心角为2弧度,则这个扇形的面积是 .23.与角-2019°终边相同的角α(α△[-360°,360°])是 . 24.化简:1-sin2100°= .25.函数y =sinx ,x ∈π2π63⎡⎤-⎢⎥⎣⎦,的最大值是 ,最小值是 .26.已知x△[π2,π],且sin2x =-12,则x = . 27.在△ABC 中,△A =60°,c =2,b =3,则a = . 三、解答题(解答题应写出文字说明及演算步骤)28.在△ABC 中,角A,B,C 的对边分别是a,b,c,若,求∠A 的值.29.函数y =sin 3ωx π⎛⎫+ ⎪⎝⎭(ω>0)的最小正周期是π,问:当x 取何值时,函数有最小值-1?30.在△ABC 中,已知b2tanA =a2tanB,试判断△ABC 的形状.31.如图所示,在一幢20米高的楼顶测得对面一铁塔的塔顶的仰角为60°,塔基的俯角为45°,求铁塔CD 的高度.32.已知点P 是第四象限角α的终边上一点,其横坐标为8,且|OP|=17,求sin α及cos α的值. 33.已知sinα,sinβα、β为锐角,求α+β的值.34.已知函数y =Asin (ωx +φ)(A >0,ω>0,0≤φ<2π)在同一周期内有最高点π,112⎛⎫ ⎪⎝⎭和最低点7π,112⎛⎫- ⎪⎝⎭,求此函数的解析式.πsin 2cos 6A A⎛⎫+= ⎪⎝⎭35.在△ABC 中,∠B =45°,b=c= A.36.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 为60m ,求河流的宽度BC 的长,(结果保留根号)答案一、单项选择题 1.A2.A【提示】::2a b c =,sin sin sin a b cA B C==,sin :sin :sin A B C ∴ 2=.::1:2:3A B C ∴=.故选A.3.B 【提示】1cos 2θ=,π0,2θ⎛⎫∈ ⎪⎝⎭,所以sin θ= B.4.B5.A6.C7.C8.B 【提示】原式=cos[(α-β)+β]=cosα. 9.C 【解析】原式=2tan22.5°1-tan222.5°=tan45°=1.10.B【解析】cos22α=2sin 2αcos 2α,即sin2α=12cos 2α.11.D 【提示】由题意可知,θ在第三象限,△cosθ<0,∴cosθ==2xx-=12-,cos2θ=2cos2θ-1=12-,故答案选D.12.C13.A14.B15.C【提示】S△ABC=12absinC=12×4×3×12=3,∴选C.16.D【提示】x+1x≥2x·1x=2,当且仅当x=1x,即x=1时等号成立.又△-2≤2sinθ≤2,∴要使x+1x=2sinθ(x>0)成立,x只能为1,∴当x=1时,2sinθ=1+11=2,∴sinθ=1,∴θ=π2+2kπ,k∈Z,∴选D.17.B【提示】(sinx+cosx)2=19,1+sin2x=19,sin2x=-89.18.C【提示】根据同角三角函数不同象限的符号,选C.19.C 【分析】∵1303°=-137°+4×360°,∴角-137°与1303°终边相同,故选C.20.D 【分析】由和差公式展开为cosπ4cosα-sinπ4sinα-(sinπ4cosα-cosπ4sinα),故选D.二、填空题21.等腰三角形【提示】sin2cos sinA B C=,由正弦定理得2cosa c B=,再根据余弦定理得22222a c b a c ac+-=⨯,解得b =c.故三角形为等腰三角形.22.25 【提示】先将弧度转化为角度,再求扇形面积,所以225π252πS =⨯=. 23.-219°和141° 【分析】 -2019°=141°-6×360°和-2019°=-219°-5×360°. 24.-cos100°【提示】原式=cos2100°=-cos100°(100°为第二象限角,余弦值小于0).25.1 -12 【解析】数形结合.26.7π11π1212或 【分析】 由π,π2x ⎡⎤∈⎢⎥⎣⎦得,2x ∈[π,2π],因为sin2x =12-,所以2x =7π11π66或,x =7π11π1212或.【提示】由余弦定理可得到2221cos 22b c a A c bc +-===,求得三、解答题 28.解 化简得,则,∴∠A=60°.29.x =-512π+kπ(k△Z ) 30.等腰三角形或直角三角形 31.CD =20(3+1)米 32.解:设P (x ,y ),则2228,170,x x y y =⎧⎪+=⎨⎪<⎩,解得y =-15,3cos 22A A=sin tan cos AA A ==∴sin α=y r =-1517,cos α=x r =817. 33.【解】∵α、β均为锐角,由sinα,得cosα;由sinβ,得cosβ,cos (α+β)=cosαcosβ-sinαsinβ=,∵0<α+β<π,∴α+β=π4.34.解:由题意得A =1,T =27ππ-1212⎛⎫⎪⎝⎭=π.又△T =2πω,∴ω=2.将π,112⎛⎫ ⎪⎝⎭代入函数式sin π6ϕ⎛⎫+ ⎪⎝⎭=1(0≤φ≤2π)得φ=π3,故函数的解析式为y =sin π23x ⎛⎫+ ⎪⎝⎭.35.【解】sin sin b cB C==,解得:sin C =∴∠C =60°或120° ∵b <c , ∴∠B <∠C.∴∠C =60°或120°都符合. ∴∠A =75°或15°36.【解】在Rt △ADC 中,∠ACD =30°,∴sin30°=60AC,得AC =120,在△ABC 中,∠ABC =105°,∠BAC =45°.sin105°=sin(60°+45°+12∴120sin105。
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
高一数学函数试题1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.3.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.4.已知函数()(Ⅰ)求函数的周期和递增区间;(Ⅱ)若,求的取值范围.【答案】(1)函数的单调递增区间为()(2)的取值范围为.【解析】(1)由题设由,解得,故函数的单调递增区间为()(2)由,可得考察函数,易知于是.故的取值范围为【考点】三角函数和差倍半公式及三角函数的图象和性质。
高一数学函数的奇偶性习题一、选择题1. 已知函数f(x)为偶函数,当x=2时,f(x)=4,则f(-2)的值为:A. 4B. 2C. -2D. -42. 设函数f(x)是一个奇函数,且当x=-3时,f(x)=1,则f(3)的值为:A. 1B. -1C. 3D. -33. 设f(x)为函数,且f(2x+1)=3x+4,则f(-2)的值为:A. -1B. 0C. 1D. 24. 已知函数f(x)为偶函数,且f(1)=2,则f(-1)的值为:A. 1B. -1C. 2D. -25. 若函数f(x)=x^3+2x^2-3x,则f(-1)的值为:A. 0B. -4C. -6D. 4二、计算题1. 设函数f(x)为奇函数,且当x=2时,f(x)=4,则求f(-2)的值。
解:由于f(x)为奇函数,故有f(-x)=-f(x)。
当x=2时,f(2)=4,代入到f(-x)=-f(x)的式子中可得f(-2)=-f(2)=-4。
因此,f(-2)的值为-4。
2. 已知函数f(x)为偶函数,且当x=-2时,f(x)=3,则求f(2)的值。
解:由于f(x)为偶函数,故有f(-x)=f(x)。
当x=-2时,f(-2)=3,代入到f(-x)=f(x)的式子中可得f(2)=f(-2)=3。
因此,f(2)的值为3。
3. 设函数f(x)=3x^2-2x+1,求证f(x)为偶函数。
证明:对于任意的x,有f(-x)=3(-x)^2-2(-x)+1=3x^2+2x+1=f(x)。
因此,根据偶函数的定义,f(x)为偶函数。
4. 若函数f(x)=2x^3-x^2+4x-5,求证f(x)为奇函数。
证明:对于任意的x,有f(-x)=2(-x)^3-(-x)^2+4(-x)-5=-2x^3-x^2-4x-5=-f(x)。
因此,根据奇函数的定义,f(x)为奇函数。
5. 已知函数f(x)为奇函数,且当x=1时,f(x)=-3,则求f(-1)的值。
解:由于f(x)为奇函数,故有f(-x)=-f(x)。
函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )= ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )= ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )= ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )= ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。
高一数学函数的概念练习题题型一函数的定义【例1】判断以下是否是函数:⑴245y x=-;⑵y x=±;⑶y=;⑷229x y+=.【例2】函数()y f x=的图象与直线1x=的公共点数目是()A.1B.0C.0或1D.1或2【例3】如图所示,能表示“y是x的函数”的是.①【例4】如下图(1)(2)(3)(4)四个图象各表示两个变量,x y的对应关系,其中表示y是x的函数关系的有.(4).(3).(1).(2).典例分析【例5】{|02},{|03}M x x N y y=≤≤=≤≤给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A、0个B、1个C、2个D、3个【例6】以下给出的对应是不是从集合A到集合B的映射?如果是映射,是不是一一映射.⑴集合{|A P P=是数轴上的点},集合RB=,对应关系f:数轴上的点与它所代表的实数对应;⑵集合{|A P P=是平面直角坐标系中的点},集合{(,)|,}B x y x y=∈∈R R,对应关系f:平面直角坐标系中的点与它的坐标对应;⑶集合{|A x x=是三角形},集合{|B x x=是圆},对应关系f:每一个三角形都对应它的内切圆;⑷集合{|A x x=是华星中学的班级},集合{|B x x=是华星中学的学生},对应关系f:每一个班级都对应班里的学生.【例7】下列对应中有几个是映射?【例8】已知12{,}A a a=,12{,}B b b=,则从A到B的不同映射共有()A.4个B.3个C.2个D.1个【例9】设:f A B→是集合A到B的映射,下列说法正确的是()A、A中每一个元素在B中必有象B、B中每一个元素在A中必有原象C、B中每一个元素在A中的原象是唯一的D、B是A中所在元素的象的集合【例10】⑴若集合{1,0,1}A=-,{2,1,0,1,2}B=--,f:A→B表示A到B的一个映射,且满足对任意x A∈都有()x f x+为偶数,则这样的映射有_______ 个.⑵设:f A B →是从集合A 到B 的映射,{}(,),A B x y x y ==∈∈R R ,:(,)(,)f x y kx y b →+,若B 中元素(6,2)在映射f 下的原象是(3,1),则k ,b 的值分别为________.【例11】已知集合{}04A x x =≤≤,{}02B y y =≤≤,下列从A 到B 的对应f 不是映射的是( )A .1:2f x y x →=B .1:3f x y x →=C .2:3f x y x →=D .21:8f x y x →=【例12】集合A ={3,4},B ={5,6,7},那么可建立从A 到B 的映射个数是__________,从B 到A的映射个数是__________.【例13】已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5【例14】(09年山东梁山)设f 、g 都是由A 到A 的映射,其对应法则如下表(从上到下):映射f 的对应法则是表1则与)]1([g f 相同的是( )A .)]1([f g ;B .)]2([f g ;C .)]3([f g ;D .)]4([f g【例15】(07年北京)已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是【例16】(06陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .7,6,1,4;B .4,6,1,7;C .6,4,1,7;D .1,6,4,7【例17】已知{5,6,7,8,9}M N ==,规定M 到N 的一个映射为()f x =15x +⎧⎨⎩99x x ≠=, ⑴如果[()]6f f a =,求a ; ⑵如果{[()]}6f f f b =,求b ; ⑶如果10{...()}6f f f c =14243次,求c .题型二 函数的定义域【例18】求下列函数的定义域(1)1()2f x x =-;(2)()f x =(3)1()2f x x-.【例19】求下列函数的定义域: (1)121y x =+-;(2)y =.【例20】函数y 的自变量x 的取值范围是( ) A .0x > B .1x > C .0x ≠ D .0x ≥且1x ≠【例21】函数224x y x -=-的定义域 .【例22】函数0y=___________.【例23】求函数()f x =的定义域.【例24】(2008年全国I卷文理)函数y = )A .{|0}x x ≥B .{|1}x x ≥C .{|1}{0}x x ≥UD .{|01}x x ≤≤【例25】求下列函数的定义域⑴y =⑵y ⑶11111y x x=---.【例26】若(2)y f x =+的定义域是(1,3],求()y f x =的定义域.【例27】已知函数(1)y f x =+定义域是[2,3]-,则(21)y f x =-的定义域是( )A .5[0]2, B .[14]-, C .[55]-, D .[37]-,【例28】(1)已知已知函数f (x )的定义域是R ,则实数a 的取值范围是( )A .a >13B .-12<a ≤0C .-12<a <0D .a ≤13【例29】(1)求下列函数的定义域:0()f x =(2)已知函数()f x 的定义域是(,)a b ,求函数()(31)(31)F x f x f x =-++的定义域.【例30】(1)函数()f x 的定义域为(0,1),求函数2()f x 的定义域;(2)已知函数(21)f x +的定义域为(0,1),求()f x 的定义域; (3)已知函数(1)f x +的定义域为[2,3]-,求2(22)f x -的定义域.【例31】求下述函数的定义域:(1)0()(32)f x x =-; (2)22()lg()lg().f x x ka x a =-+-【例32】已知函数()f x 定义域为(0,2),求下列函数的定义域:(1) 2()23f x +;(2)2y =。
高一数学函数试题及答案一、选择题(每题4分,共40分)1. 函数f(x) = 2x^2 - 3x + 1在区间[-1, 2]上的最大值是:A. 1B. 7C. 9D. 112. 若函数g(x) = x^3 - 2x^2 + x - 2的零点是x0,则x0的取值范围是:A. (-∞, 1)B. (1, 2)C. (2, 3)D. (3, +∞)3. 函数h(x) = sin(x) + cos(x)的值域是:A. [-1, 0]B. [-1, 1]C. [0, 1]D. [1, 2]...20. 若函数f(x) = log_a(x)(a > 0,a ≠ 1)在区间(0, 1)上是增函数,则a的取值范围是:A. (0, 1)B. (1, +∞)C. (0, 1/e)D. (1/e, 1)二、填空题(每题3分,共15分)1. 若函数f(x) = x^2 - 4x + 4的图像关于x轴对称,则x的取值是________。
2. 函数y = 2^x的反函数是________。
3. 若函数f(x) = 1/x在点(1, 1)处的切线斜率为-1,则该切线方程是________。
...5. 若函数f(x) = x^3 - 6x^2 + 9x + 2的极小值点为x0,则x0的值为________。
三、解答题(共45分)1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求证f(x)在(-∞, -1)上单调递增。
(10分)2. 求函数y = x^2 - 2x + 3在区间[1, 3]上的值域。
(10分)3. 已知函数f(x) = x^2 + 2x + 1,x ∈ R,求f(x)的最小值。
(10分)4. 解不等式:|x - 1| + |x - 3| ≤ 2。
(10分)5. 已知函数f(x) = log_2(x),x ∈ (0, +∞),求f(x)的值域。
(5分)四、附加题(10分)1. 已知函数f(x) = 2x - 1,g(x) = 3x + 2,求f(g(x))的表达式。
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
高-敬学碱选择题112道及答案1、已知映射f : A r B ,其中A=B=R,对应法则f-.y = -x2+2x,对于实数keB,在集合A中不存在原象,则左的取值范围是(A )A.k>lB. MC. k<lD. kWl 2、今有一组实验数据如下:r2-lA.v = log2tB. v = log t tC. v =—-—D. v = 2t -22 23、函数y =1*1(1-*)在区间A上是增函数,那么A的区间是(B )A. ( — 8, 0)B. [0,1]C. [0, +°°)D. (1,+00)4、已知定义域为R的偶函数f (x)在[0, +8)是增函数,且/(I) =0,贝I]不等式/(log4x) > 0的解集是(C )A. {x I x > 2}B.C. I 0 < x < ;或x > 2;D. {x I ? < x < 1或x > 2}5、函数f{x) = -x\x + a\+b的奇函数的充要条件是(D )A. b=0B. a=0C. ab=0D. a~+b~=06、函数/(x) = (|)W -4(|)w(x e R)的值域是A. ( 一°°, 0)B. [-3, 0]C. [-4,0) 7、设0<a<l,实数x,y满足x+log a y=0,则y关于x轴的函数图像大致形状是(D ) D. [-3,0)A.在区间(一1,0)上是增函数B. 在区间(0,1)上是增函数C.在区间(一2,0)上是减函数D. 在区间(0,2)上是减函数9、已知定义在实数R 上的函数y = f(x)不恒为零,同时满足/(x + y) = /(x)/(y),且当尤>0时, f(x)>l,那么当x<0时,一定有(D )B. -l</(x)<0C. /(x) > 1D. 0 </(%)<!集合 M = {(x,^) I y = A /1-^2,x,y G R),N = {(x,y) I x = 1,^ G 7?),则 A/p|N= ( A )已知 /(x) = 7T{X G R),贝Ij/(X 2)=如果 X= {xlx 2—x=0}, Y= {xlx 2+x=O),那么 XCl Y 等于14、已知a<b<0,奇函数/I*)的定义域为[Q , ~a ],在区间[一。
高一数学必修一函数的应用一.选择题(共30小题)1.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e)B.C.D.(0,1)2.某码头有总重量为13.5吨的一批货箱,对于每个货箱重量都不超过0.35吨的任何情况,都要一次运走这批货箱,则至少需要准备载重1.5吨的卡车()A.12辆B.11辆C.10辆D.9辆3.已知函数f(x)=和g(x)=a(a∈R且为常数).有以下结论:①当a=4时,存在实数m,使得关于x的方程f(x)=g(x)有四个不同的实数根;②存在m∈[3,4],使得关于x的方程f(x)=g(x)有三个不同的实数根;③当x>0时,若函数h(x)=f2(x)+bf(x)+c恰有3个不同的零点x1,x2,x3,则x1x2x3=1;④当m=﹣4时,关于x的方程f(x)=g(x)有四个不同的实数根x1,x2,x3,x4,且x1<x2<x3<x4,若f(x)在[x,x4]上的最大值为ln4,则sin(3x1+3x2+5x3+4x4)π=1.其中正确结论的个数是()A.1个B.2个C.3个D.4个4.已知函数f(x)=,若函数g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a(a∈R)恰有8个不同零点,则实数a的取值范围是()A.(0,1)B.[0,1]C.(0,+∞)D.[0,+∞)5.已知,方程有三个实根x1<x2<x3,若x3﹣x2=2(x2﹣x1),则实数a=()A.B.C.a=﹣1D.a=16.已知函数,若方程f(x)=ax有三个不同的实数根x1,x2,x3,且x1<x2<x3,则x1﹣x2的取值范围是()A.B.C.D.7.已知函数y=f(x﹣1)的图象关于直线x=1对称,则方程f(2020﹣x)=f(log2020|x|)的解至少有多少个()A.2B.3C.4D.58.函数f(x)是定义在R上的奇函数,且函数f(x﹣1)为偶函数,当x=[0,1]时,,若g(x)=f(x)﹣x﹣b有三个零点,则实数b的取值集合是()A.,k∈Z B.,k∈ZC.,k∈Z D.,k∈Z9.已知函数,若函数g(x)=f(x)﹣kx﹣1恰有三个零点,则实数k的取值范围为()A.B.C.D.10.已知函数,若关于x的方程|f(x)﹣a|+|f(x)﹣a﹣1|=1,有且仅有三个不同的整数解,则实数a的取值范围是()A.B.[0,8]C.D.11.已知函数f(x)=,g(x)=f(x)﹣b,h(x)=f[f(x)]﹣b,记函数g(x)和h(x)的零点个数分别是M,N,则()A.若M=1,则N≤2 B.若M=2,则N≥2C.若M=3,则N=4 D.若N=3,则M=212.已知f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,则实数a的取值范围()A.B.C.D.13.若函数f(x)=ae2x+(a﹣2)e x﹣x,a>0,若f(x)有两个零点,则a的取值范围为()A.(0,1)B.(0,1]C.D.14.已知函数f(x)=函数g(x)=kx.若关于x的方程f(x)﹣g(x)=0有3个互异的实数根,则实数k的取值范围是()A.B.C.D.15.已知函数f(x)=min{x|x﹣2a|,x2﹣6ax+8a2+4}(a>1),其中min(p,q)=,若方程f(x)=恰好有3个不同解x1,x2,x3(x1<x2<x3),则x1+x2与x3的大小关系为()A.x1+x2>x3B.x1+x2=x3C.x1+x2<x3D.不能确定16.关于x的方程有四个不同的实数根,且x1<x2<x3<x4,则(x4﹣x1)+(x3﹣x2)的取值范围()A.B.C.D.17.已知函数,g(x)=ax3﹣f(x).若函数g(x)恰有两个非负零点,则实数a的取值范围是()A.B.C.D.18.已知函数f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2有三个不同的零点x1,x2,x3,且x1<1<x2<x3,则的值为()A.81B.﹣81C.﹣9D.919.已知函数f(x)=x2+ax+b(a,b∈R)在区间[2,3]上有零点,则a2+ab的取值范围是()A.(﹣∞,4]B.C.[4,]D.20.已知三次函数0)有两个零点,若方程f′[f(x)]=0有四个实数根,则实数a的范围为()A.B.C.D.21.已知函数f(x)=x2﹣2x﹣1,若函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k(其中a>1)有三个不同的零点,则实数k 的取值范围为()A.(,]B.()C.(]D.()22.已知方程xe x﹣a(e2x﹣1)=0只有一个实数根,则a的取值范围是()A.a≤0或a≥B.a≤0或a≥C.a≤0D.a≥0或a≤﹣23.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201824.已知函数f(x)=,若函数F(x)=f(x)﹣b有四个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则的取值范围是()A.(2,+∞)B.C.D.[2,+∞)25.已知函数f(x)=lnx+(1﹣a)x+a(a>0),若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是()A.B.(0,2+ln2)C.D.26.已知函数f(x)=|x2﹣4x|,x∈R,若关于x的方程f(x)=m|x+1|﹣2恰有4个互异的实数根,则实数m的取值范围为()A.(0,)B.(0,)C.(2,)D.(2,)27.已知函数,则函数F(x)=f(f(x))﹣ef(x)的零点个数为()(e是自然对数的底数).A.6B.5C.4D.328.已知关于x的方程为=3e x﹣2+(x2﹣3),则其实根的个数为()A.2B.3C.4D.529.定义在R上的偶函数f(x)满足f(x﹣2)=f(x),且当x∈[1,2]时,f(x)=﹣4x2+18x﹣14,若函数g(x)=f (x)﹣mx有三个零点,则正实数m的取值范围为()A.(,18﹣4)B.(2,18﹣4)C.(2,3)D.(,3)30.已知函数f(x)=|log2x|,g(x)=,则方程|f(x)﹣g(x)|=1的实根个数为()A.2个B.3个C.4个D.5个二.填空题(共5小题)31.已知关于x的方程xlnx﹣a(x2﹣1)=0在(0,+∞)上有且只有一个实数根,则a的取值范围是.32.已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为.33.若函数f(x)=﹣﹣a存在零点,则实数a的取值范围是.34.已知函数f(x)=1+x﹣+﹣+…+,g(x)=1﹣x+﹣++…﹣,设F(x)=f(x+3)g(x﹣4)且F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值是.35.已知函数,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为.三.解答题(共5小题)36.已知函数f(x)=lnx﹣ax(a>0),设.(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;(2)首项为m的数列{a n}满足:①a n+1+a n≠;②f(a n+1)=g(a n).其中0<m<.求证:对于任意的i,j∈N*,均有a i﹣a j<﹣m.37.已知m>0,函数f(x)=e x﹣mx,直线l:y=﹣m.(1)讨论f(x)的图象与直线l的交点个数;(2)若函数f(x)的图象与直线l:y=﹣m相交于M(x1,y1),N(x2,y2)两点(x1<x2),证明:.38.已知a∈R,函数f(x)=x﹣ae x+1有两个零点x1,x2(x1<x2).(Ⅰ)求实数a的取值范围;(Ⅱ)证明:e+e>2.39.已知函数在(﹣∞,+∞)上是增函数.(1)求实数a的值;(2)若函数g(x)=f(x)﹣kx有三个零点,求实数k的取值范围.40.今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).(1)若a=,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?参考答案与试题解析一.选择题(共30小题)1.【解答】解:由题意,a>0,令t=,则f(x)=a⇔⇔⇔⇔.记g(t)=.当t<0时,g(t)=2ln(﹣t)﹣(t﹣)单调递减,且g(﹣1)=0,又g(1)=0,∴只需g(t)=0在(0,+∞)上有两个不等于1的不等根.则⇔=,记h(t)=(t>0且t≠1),则h′(t)==.令φ(t)=,则φ′(t)==<0.∵φ(1)=0,∴φ(t)=在(0,1)大于0,在(1,+∞)上小于0.∴h′(t)在(0,1)上大于0,在(1,+∞)上小于0,则h(t)在(0,1)上单调递增,在(1,+∞)上单调递减.由,可得,即a<1.∴实数a的取值范围是(0,1).故选:D.2.【解答】解:【解法1】从第1辆卡车开始依次装上货物,每车一直装到再装一箱就超过1.5吨为止,把多出的这一箱先单独留出来不往后面装,因为13.5÷(1.5+0.35)≈7.3,所以这样至少能装到第7辆卡车(包括单独留出)之后还有剩余;①如果装到第7辆卡车剩余的已经不足1.5吨,那么第8辆卡车可以把剩余的装走,此时前7辆卡车单独留出的7个货箱可以分成两组,一组3个,一组4个,每组不超过0.35×4=1.4吨,这样再找2辆卡车就可以拉完,一共最多需要10辆卡车;②如果装到第7辆车剩余的货箱超过1.5吨,可以继续装第8辆卡车,此时8辆卡车上单独留出8个货箱可以分成两组,每组4个,每组都不超过0.35×4=1.4吨,再找2辆卡车就可以拉走;上面10辆卡车一共装了超过1.5×8=12吨货箱,所剩货箱不超过13.5﹣12=1.5吨,最多还需要1辆卡车就可以拉走,所以一共最多需要11辆卡车;综上,要保证任何情况都能一次性拉走,则至少需要11辆卡车.【解法二】由题意,将所有货箱任意排定顺序;首先将货箱依次装上第1辆卡车,并直到再装1个就超过载重量为止,并将这最后不能装上的货箱放在第1辆卡车之旁;然后按同样办法装第2辆、第3辆、…,直到第8辆车装完并在车旁放了1个货箱为止;显然前8辆车中每辆所装货箱及车旁所放1箱的重量和超过1.5吨;所以所余货箱的重量和不足1.5吨,可以全部装入第9辆卡车;然后把前8辆卡车旁所放的各1货箱分别装入后2辆卡车,每车4个货箱,显然不超载;这样装车就可用8+1+2=11辆卡车1次把这批货箱运走.故选:B.3.【解答】解:①当x≤0时,f(x)=﹣x2+mx=﹣(x2﹣mx)=﹣(x﹣)2+,当对称轴<0且>4,即m<0且m2>16,即m<﹣4时,f(x)=g(x)=4有四个不同的实数根,故①正确,②若m>0,则函数的对称轴>0,此时当x≤0时,函数f(x)为增函数,且f(x)≤0,此时当m∈[3,4],使得关于x的方程f(x)=g(x)不可能有三个不同的实数根,故②错误③当x>0时,设t=f(x)=|lnx|,若f2(x)+bf(x)+c=0有三个不同的根,则t2+bt+c=0有两个不同的实根,其中t1=0,t2>0,当t1=0时,对应一个根x1=1,当t2>0时,对应两个根x2,x3,且0<x2<1<x3,则|lnx2|=|lnx3|,即﹣lnx2=lnx3,则lnx2+lnx3=0,即ln(x2x3)=0,则x2x3=1,即x1x2x3=1,故③正确,④当m=﹣4时,作出f(x)的图象如图,由对数的性质知x3x4=1,x<<x3,即f(x)在[x,x4]上的最大值为f(x)=|lnx|=2|lnx3|=﹣2lnx3=ln4=2ln2,得lnx3=﹣ln2,得x3=,则x4=2,由对称性知,即x1+x2=﹣4,则sin(3x1+3x2+5x3+4x4)π=sin(﹣12++8)π=sin(﹣4π+π)=sinπ=sin=1,故④正确,故正确的是①③④,共3个,故选:C.4.【解答】解:由g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a=0得[f(f(x))﹣1][f(f(x)﹣a]=0,则f(f(x))=1或f(f(x))=a,作出f(x)的图象如图,则若f(x)=1,则x=0或x=2,设t=f(x),由f(f(x))=1得f(t)=1,此时t=0或t=2,当t=0时,f(x)=t=0,有两个根,当t=2时,f(x)=t=2,有1个根,则必须有f(f(x))=a,(a≠1)有5个根,设t=f(x),由f(f(x))=a得f(t)=a,若a=0,由f(t)=a=0得t =﹣1,或t=1,f(x)=﹣1有一个根,f(﹣x)=1有两个根,此时有3个根,不满足条件.若a>1,由f(t)=a得t>2,f(x)=t有一个根,不满足条件.若a<0,由f(t)=a得﹣2<t<﹣1,f(x)=t有一个根,不满足条件.若0<a<1,由f(t)=a得﹣1<t1<0,或0<t2<1或1<t3<2,当﹣1<t1<0时,f(x)=t1,有一个根,当0<t2<1时,f(x)=t2,有3个根,当1<t3<2时,f(x)=t3,有一个根,此时有1+3+1=5个根,满足条件.故0<a<1,即实数a的取值范围是(0,1),故选:A.5.【解答】解:由1﹣x2≥0得x2≤1,则﹣1≤x≤1,当x<0时,由f(x)=2,即﹣2x=2.得1﹣x2=x2,即2x2=1,x2=,则x=﹣,①当﹣1≤x≤﹣时,有f(x)≥2,原方程可化为f(x)+2+f (x)﹣2﹣2ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x=﹣,由﹣1≤﹣≤﹣解得:0≤a≤2﹣2.②当﹣<x≤1时,f(x)<2,原方程可化为4﹣2ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x=﹣,又0≤a≤2﹣2,∴﹣<﹣<0.∴x1=﹣,x2=﹣,x3=0.由x3﹣x2=2(x2﹣x1),得=2(+),解得a=﹣(舍)或a=.因此,所求实数a=.故选:B.6.【解答】解:当y=ax与y=lnx相切时,设切点为(x0,lnx0),,∴,,由得再由图知方程f(x)=ax的三个不同的实数根x1,x2,x3满足,1<x2<e<x3因此,即x1﹣x2的取值范围是()故选:B.7.【解答】解:∵f(x﹣1)是f(x)向右平移一个单位的图象,且函数y=f(x﹣1)的图象关于直线x=1对称,所以函数f(x)关于直线x=0对称,即f(x)为偶函数,因此当“f(2020﹣x)=f(log2020|x|)”是“|2020﹣x|=|f(log2020|x|)|”充要条件时,此时方程f(2020﹣x)=f(log2020|x|)的解的个数最少,接下来讨论方程|2020﹣x|=|log2020|x||的解的个数,因为|2020﹣x|=|log2020|x||等价于或,①当时,方程的解的个数即函数y=2020﹣x的图象和函数y=log2020|x|的图象的交点个数,画出两函数图象如下图所示:易知两函数在x∈(0,+∞)上存在一个交点,故方程有1解;②当时,下面分两种情况进行讨论,若x<0,等价于,令g(x)=,易得函数g(x)在(﹣∞,0)上单调递减,又因为,,由零点存在定理可得函数g(x)在(﹣∞,0)上存在唯一零点,即方程在(﹣∞,0)上有且只有一个解;若x>0时,等价于,下面我们证明当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,假设A点在指数函数y=a x上,且指数函数过该点的切线斜率为﹣1,B点在对数函数y=log a x上,且对数函数过该点的切线斜率也为﹣1,当A、B重合时,它们会有一个交点,此时就是一个界点.图象如下图所示,指数函数为y=a x,求导y′=a x lna,即指数函数切线的斜率,,∴,与指数函数y=a x对应的反函数,对数函数为y=log a x,求导,即对数函数斜率,,∴x B=﹣log a e,A,B重合,即x A =x B,∴log a(﹣log a e)=﹣log a e,∴,即a=,∴,即是一个分界点,结合指数函数数及对数函数的变化趋势可知,当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,又因为,所以,于是方程在(0,+∞)上有三个解,即方程在(0,+∞)上有三个解,综上所述方程|2020﹣x|=|log2020|x||一共有5个解,于是方程f(2020﹣x)=f(log2020|x|)的解至少5个,故选:D.8.【解答】解:由已知得,f(﹣x)=﹣f(x),f(x﹣1)=f(﹣x﹣1),则f(x+1)=﹣f(﹣x﹣1)=﹣f(x﹣1)=f(1﹣x),所以函数f(x)的图象关于直线x=1对称,关于原点对称,又f(x+2)=f((x+1)+1)=﹣f((x+1)﹣1)=﹣f(x),进而有f(x+4)=﹣f(x+2)=f(x),所以得函数f(x)是以4为周期得周期函数,由g(x)=f (x)﹣x﹣b有三个零点可知,函数f(x)与函数y=x+b得图象有三个交点,当直线y=x+b与函数f(x)图象在[0,1]上相切时,由,即2x2+(2b﹣2)x+b2=0,故方程2x2+(2b﹣2)x+b2=0有两个相等得实根,由△=0⇒(2b﹣2)2﹣4•2•b2=0,解得b=﹣1±,当x∈[0,1]时,f(x)=,作出函数f(x)与函数y=x+b的图象如图:由图知当直线y=x+b与函数f(x)图象在[0,1]上相切时,b=﹣1+,数形结合可得g(x)在[﹣2,2]上有三个零点时,实数b满足,再根据函数f(x)的周期为4,可得所求的实数b的范围为,k∈Z.故选:C.9.【解答】解:当2<x<4时,y=,则y≤0,等式两边平方得y2=﹣x2+6x﹣8,整理得(x﹣3)2+y2=1,所以曲线y=表示圆(x﹣3)2+y2=1的下半圆,如下图所示,由题意可知,函数y=g(x)有三个不同的零点,等价于直线y=kx+1与曲线y=f(x)的图象有三个不同交点,直线y=kx+1过定点P(0,1),当直线y=kx+1过点A(4,0)时,则4k+1=0,可得k=;当直线y=kx+1与圆(x﹣3)2+y2=1相切,且切点位于第三象限时,k<0,此时,解得k=.由图象可知,当时,直线y=kx+1与曲线y=f(x)的图象有三个不同交点.因此,实数k取值范围是.故选:B.10.【解答】解:∵|f(x)﹣a|+|f(x)﹣a﹣1|=,∴函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,当x<0时,且f(x)<0,由双勾函数的单调性可知,函数y=f(x)在区间(﹣∞,﹣)上单调递减,在区间(﹣,0)上单调递增,于是当x<0时,,∵f(﹣1)=,f(﹣2)=,f(﹣3)=,f(﹣4)=,且f(﹣4)>f (﹣3)>f(﹣2),如下图所示,要使得函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,则f(﹣3)≤a+1<f(﹣4),即,解得.因此,实数a的取值范围是.故选:A.11.【解答】解:若f(x)=2e2x﹣e x时,令f′(x)=4e2x﹣e x=0,解得x=ln,易知此时f(x)在(﹣∞,ln)上单调递减,在(ln,+∞)上单调递增;作出函数y=2e2x﹣e x及函数y=x的图象如下图所示,由图象可知,函数f(x)最多有两个零点x=0或x=ln,不妨令b=0,则①当a≤ln时,此时函数g(x)的零点为x=0,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln有1个解,则N=2;②当ln<a≤0时,此时函数g(x)的零点为0,ln,则M=2,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有两个解,f(x)=ln无解,则N=2;③当a>0时,此时函数g(x)的零点为ln,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln无解,则N=1;由以上分析可知,故选:A.12.【解答】解:由题意知f(0)=0,∵f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,∴f(x)只有一个零点0.∵f(﹣x)=sinπx+a(e﹣x﹣e x)=﹣f(x),∴f(x)是奇函数,故只考虑当x>0时,函数f(x)无零点即可.当x>0时,有πx>sinπx,∴f(x)=a(e x﹣e﹣x﹣sinπx)>a(e x﹣e﹣x﹣).令g(x)=e x﹣e﹣x﹣,x >0,则g(0)=0,∵g′(x)=e x+e﹣x﹣,x>0,g″(x)=e x﹣e﹣x>0,∴g′(x)在(0,+∞)上单调递增,∵g(0)=0,∴g′(x)>g′(0)=2﹣≥0,解得a≥.故选:B.13.【解答】解:f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).a≤0时,f′(x)<0,函数f(x)在R上单调递减,此时函数f(x)最多有一个零点,不满足题意,舍去.a>0时,f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).令f′(x)=0,∴e x=,解得x=﹣lna.∴x∈(﹣∞,﹣lna)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣lna)上单调递减;x∈(﹣lna,+∞)时,f′(x)>0,∴函数f(x)在(﹣lna,+∞)上单调递增.∴x=﹣lna时,函数f(x)取得极小值,∵f(x)有两个零点,∴f(﹣lna)=a×+(a﹣2)×+lna=1﹣+lna<0,令u(a)=1﹣+lna,u(1)=0.u′(a)=+>0,∴函数u(x)在(0,+∞)上单调递增,∴0<a<1.又x→﹣∞时,f(x)→+∞;x→+∞时,f(x)→+∞.∴满足函数f(x)有两个零点.∴a的取值范围为(0,1),故选:A.14.【解答】解:作出函数g(x)和f(x)的图象如图:由图可知,当k≤0时,不满足题意,则k>0;当直线y=kx经过点B时,k==,此时y=x与函数f(x)图象有3个交点,满足;当y=kx为y=lnx的切线时,设切点(x0,lnx0),则k=,故有lnx0=•x0=1,解得x0=e,即有切点为A(e,1),此时g(x)=x与f(x)有3个交点,满足题意;综上:当k∈[,],故选:B.15.【解答】解:f(x)=,易知f(a)=a2(极大值);f(2a)=0(极小值);(极大值);f(3a)=4﹣a2(极小值).要使f(x)=恰好有3个不同解,结合图象得:①当,即时,解得,不存在这样的实数a.②当,即时,解得;此时2a<,又因为x2与x3关于x=3a对称,∴x3﹣3a=3a﹣x2<a<2a<x1.∴x3<4a <x1+x2.③当,即时,解得a>2.此时,x1,x2是方程﹣x2+2ax=的两实根,所以x1+x2=2a,而x3>3a,所以x1+x2<x3,故选:D.16.【解答】解:依题意可知,|x2﹣4x+1|=t2+1,由方程有四个根,所以函数y=t2+1与y=|x2﹣4x+1|的图象有四个交点,由图可知,x1+x4=4,x2+x3=4,1≤t2+1<3,解得t2∈(0,2),由x2﹣4x+1=t2+1解得x1=2﹣;由﹣(x2﹣4x+1)=t2+1解得x2=2﹣;所以(x4﹣x1)+(x3﹣x2)=8﹣2(x1+x2)=2(+)设m =t2∈(0,2),n=+,n2=m+4+2﹣m+2=6+2∈(6,6+4),即m∈(,2+),所以(x4﹣x1)+(x3﹣x2)的取值范围是(2,4+2).故选:B.17.【解答】解:显然,x=0满足g(x)=0,因此,只需再让g(x)=0有另外一个唯一正根即可.ax3﹣f(x)=0,即为ax3=f(x).作出h(x)=ax3,y=f(x)图象如下:说明:射线与线段是y=f(x)的部分图象,因为要分三种情况分析,故y=h(x)的图象作了三个(只做出y轴右侧部分),分别对应①、②、③.(1)对于第一种情况:因为h′(0)=0<1,所以当y=h(x)(如图象①)与y=f(x)=x在[0,1)上的图象有交点A时,只需h(1)=a>1即可;(2)对于第二种情况:y=h(x)(图象②)与y=f(x)=x﹣1在[1,2)上的图象切于点B,设切点为(m,m﹣1),因为h′(x)=3ax2,则,解得;(3)当y=h(x)(图象③)与y=x﹣1(1≤x<2)相交于点C,且满足h(2)≤1,即时,只需x∈[2,3)时,g(x)≥0恒成立即可.所以ax3≥x﹣2,x∈[0,2]恒成立即可,且只能在x=3处取等号,即,,在[2,3]上恒成立,故u(x)在[2,3]上递增,所以u(x)max=u(3)=,.故此时即为所求.综上可知,a的范围是.故选:C.18.【解答】解:f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2=0⇒(a﹣3)(xlnx﹣3x2)=﹣9(lnx)2⇒a﹣3=,令t=3﹣,则,t∈[3﹣,+∞),⇒a﹣3=⇒9t2﹣(51+a)t+81=0.设关于t的一元二次方程有两实根t1,t2,∴△=(51+a)2﹣4×9×81>0,可得a>3或a<﹣105.∴>=6,t1t2=9.又∵t1+t2=,当且仅当t1=t2=3时等号成立,由于t1+t2≠6,∴t1>3,<3(不妨设t1>t2).∵x1<1<x2<x3,∴>3,<3,3﹣<3.则可知=t1,=3﹣=t2.∴=.故选:A.19.【解答】解:不妨设x1,x2为函数f(x)的两个零点,其中x1∈[2,3],x2∈R,则x1+x2=﹣a,x1x2=b.则a2+ab =(x1+x2)2﹣(x1+x2)•x1x2=(1﹣x1)x22+(2x1﹣x12)x2+x12,由1﹣x1<0,x2∈R,所以(1﹣x1)x22+(2x1﹣x12)x2+x12≤=,可令g(x1)=,g′(x1)=,当x1∈[2,3],g′(x1)>0恒成立,所以g(x1)∈[g(2),g(3)]=[4,].则g(x1)的最大值为,此时x1=3,还应满足x2=﹣=﹣,显然x1=3,x2=﹣时,a=b=﹣,a2+ab=.故选:B.20.【解答】解:三次函数0)有两个零点,且由f′(x)=x2+2ax﹣3a2=0得x=a 或﹣3a.故必有.又若方程f′[f(x)]=0有四个实数根,则f(x)=a或f(x)=﹣3a共有四个根.①当前一组混合组成立时,做出图象(图①)可知,只需0<a<f(﹣3a)即可,即,解得②;②当后一组混合组成立时b=﹣9a3,做出图象(图②)可知图②只需f(a)<﹣3a<0即可,即,解得③.取②③的并集可知,当时.方程f′[f(x)]=0有四个根.故选:C.21.【解答】解:令t=|a x﹣1|,t≥0,则函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k可换元为:h(t)=t2+(k﹣2)t+4k﹣1.若g(x)有三个不同的零点,则方程h(t)=0有两个不同的实数根t1,t2,且解的情况有如下三种:①t1∈(1,+∞),t2∈(0,1),此时,解得;②t1=0,t2∈(0,1),此时由h(0)=0,求得k=,∴h(t)=,即,不合题意;③t1=1,t2∈(0,1),此时由h(1)=0,得k=,∴h(t)=,解得,符合题意.综上,实数k的取值范围为(].故选:C.22.【解答】解:令t=e x,t>0,x=lnt,则原方程转化成tlnt﹣a(t2﹣1)=0,即,令,显然f(1)=0,问题转化成函数f(t)在(0,+∞)上只有一个零点1,,若a=0,则f(t)=lnt在(0,+∞)单调递增,f(1)=0,此时符合题意;若a<0,则f′(t)>0,f(t)在(0,+∞)单调递增,f(1)=0,此时符合题意;若a>0,记h(t)=﹣at2+t﹣a,则函数h(t)开口向下,对称轴,过(0,﹣a),△=1﹣4a2,当△≤0 即1﹣4a2≤0,即时,f′(t)≤0,f(t)在(0,+∞)单调递减,f(1)=0,此时符合题意;当△>0 即1﹣4a2>0,即时,设h(t)=0有两个不等实根t1,t2,0<t1<t2,又h(1)>0,对称轴,所以0<t1<1<t2,则f(t)在(0,t1)单调递减,(t1,t2)单调递增,(t2,+∞)单调递增,由于f(1)=0,所以f(t2)>0,取,,记令,则,所以f(t0)<0,结合零点存在性定理可知,函数f(t)在(t1,t2)存在一个零点,不符合题意;综上,符合题意的a的取值范围是a≤0 或,故选:A.23.【解答】解:因为f(x+2)=f(x),所以f(x)的一个周期为2,当x>1时,g(x)=,所以g′(x)=,所以x∈(1,e),g′(x)>0,函数是增函数,g(x)>g(1)=0,x∈(e,+∞),g′(x)<0,函数是减函数,g(x)>0,g(x)的最大值为1,f(x)与g(x)的图象如下:在区间[﹣1,1]内有一个根,在[1,2017]内有1008个周期,每个周期内均有2个根,所以F(x)共有2017个零点.故选:C.24.【解答】解:作出f(x)的函数图象如图所示:由图象知x1+x2=﹣4,x3x4=1,0<b≤1,解不等式0<﹣log2x≤1得:≤x3<1,∴=+,令t=x32,则≤t<1,令g(t)=t+,则g(t)在[,1]上单调递减,g(1)=2,g()=,∴g(1)<g(t)≤g(),即2<t+≤,故选:C.25.【解答】解:由f(x)=lnx+(1﹣a)x+a>0,得lnx>(a﹣1)x﹣a,作出函数y=lnx与y=(a﹣1)x﹣a的图象如图:直线y=(a﹣1)x﹣a过定点(1,﹣1),当x=2时,曲线y=lnx上的点为(2,ln2),当x=3时,曲线y=lnx上的点为(3,ln3).过点(1,﹣1)与(2,ln2)的直线的斜率k=,过点(1,﹣1)与(3,ln3)的直线的斜率k=.由a﹣1=ln2+1,得a=ln2+2,由a﹣1=,得a=.∴若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是.故选:C.26.【解答】解:作出f(x)=|x2﹣4x|与f(x)=m|x+1|﹣2的图象如图,由图可知,f(x)=m|x+1|﹣2恒过(﹣1,﹣2),且为2条射线,斜率分别为m,﹣m,当f(x)=m|x+1|﹣2过(0,0)以及与抛物线相切时时临界情况,当f(x)=m|x+1|﹣2过(0,0)时,m==2,当f(x)=m|x+1|﹣2与y=﹣x2+4x相切时,联立,得x2+(m﹣4)x+m﹣2=0,则△=(m﹣4)2﹣4(m﹣2)=0,解得m=6﹣2(6+2舍去),故m的取值范围为(2,6﹣2),故选:C.27.【解答】解:不妨设,,易知,f1(x)<0在(﹣∞,0]上恒成立,且在(﹣∞,0]单调递增;,设,由当x→0+时,g(x)→﹣∞,g(1)=e﹣1>0,且函数g(x)在(0,+∞)上单增,故函数g(x)存在唯一零点x0∈(0,1),使得g(x0)=0,即,则,故当x∈(0,x0)时,g(x)<0,f2'(x)<0,f2(x)单减;当x∈(x0,+∞)时,g(x)>0,f2'(x)>0,f2(x)单增,故=0,故f2(x)≥0;令t=f(x),F(t)=f(t)﹣et=0,当t≤0时,﹣e﹣t﹣et=0,解得t=﹣1,此时易知f(x)=t=﹣1有一个解;当t>0时,te t﹣t﹣1﹣lnt﹣et=0,即te t﹣t﹣1﹣lnt=et,作函数f2(t)与函数y=et如下图所示,由图可知,函数f2(t)与函数y=et有两个交点,设这两个交点为t1,t2,且t1>0,t2>0,而由图观察易知,f(x)=t1,f(x)=t2均有两个交点,故此时共有四个解;综上,函数F(x)=f(f(x))﹣ef(x)的零点个数为5.故选:B.28.【解答】解:x=不是方程=3e x﹣2+(x2﹣3)的根,所以方程可变形为﹣=,原问题等价于考查函数y=﹣与函数g(x)=的交点个数,令h(x)=,则h′(x)=,列表可得:x(﹣∞,﹣(﹣,﹣1)(﹣1,)(,3)(3,+∞))h′(x)++﹣﹣+h(x)单调递增单调递增单调递减单调递减单调递增函数y=在有意义的区间内单调递增,故g(x)的单调性与函数h(x)的单调性一致,且g(x)的极值g (﹣1)=g(3)=﹣+2e,绘制函数图象如图所示,观察可得,y=﹣与函数g(x)恒有3个交点,即方程实数根的个数是3,故选:B.29.【解答】解:根据f(x﹣2)=f(x),可知函数的一个周期为2,作出x∈[1,2]时,f(x)=﹣4x2+18x﹣14的图象再根据函数f(x)为偶函数,f(﹣x)=f(x)=f(x+2),所以函数f(x)的图象关于直线x=1对称,利用周期性,可以作出函数f(x)的图象,函数g(x)=f(x)﹣mx有三个零点,所以函数y=f(x)的图象与直线y=mx 有三个交点,由图可知,当直线位于直线l1与直线l2之间时可以满足题意.当直线l2与y=f(x)的图象相切时,联立得,4x2+(m﹣18)x+14=0,∴△=(m﹣18)2﹣4×4×14=0,解得m=18﹣4,m=19+4(舍去)∴<m<18﹣4.故选:A.30.【解答】解:方程|f(x)﹣g(x)|=1⇔f(x)=g(x)±1,y=g(x)+1=,y=g(x)﹣1=.分别画出y=f(x),y=g(x)+1的图象.由图象(1)可得:0<x≤1时,两图象有一个交点;1<x≤2时,两图象有一个交点;x>2时,两图象有一个交点.分别画出y=f(x),y=g(x)﹣1的图象.由图象(2)可知:x>时,两图象有一个交点.综上可知:方程|f(x)﹣g(x)|=1实数根的个数为4.故选:C.二.填空题(共5小题)31.【解答】解:当x=1时,方程等价为ln1﹣a(1﹣1)=0,即x=1是方程的一个根,若当x>0时,方程只有一个根,则由xlnx﹣a(x2﹣1)=0得x>0,且xlnx=a(x2﹣1),即lnx=a(x﹣),当x≠时,方程无解,即函数g(x)=lnx与h(x)=a(x﹣),在x≠1时无解,函数g(x)=lnx为增函数,g′(x)=,h′(x)=a(1+),则当a=0时,h(x)=0,此时h(x)与函数g(x)只有一个交点(1,0),若a<0,则h′(x)<0,即h(x)为减函数,且h(1)=0,此时两个函数图象只有一个交点(1,0)满足条件,若a>0,要使g(x)与h(x)只有一个交点(1,0),则只需要h′(1)≥g′(1),即可则2a≥1,即a≥,综上a≥或a≤0,故答案为:a≥或a≤032.【解答】解:函数=0,得|x+a|﹣﹣a=3,设g(x)=|x+a|﹣﹣a,h(x)=3,则函数g (x)=,不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>﹣a时,由f(x)=0,得g(x)=3,即x﹣=3,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此时x2=﹣1,x3=4,由等差数列的性质可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得6+﹣2a =3,解得a=,满足f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,则f(x)=0在(﹣∞,﹣a]上有两个不同的解,不妨设x1,x2,其中x3=4,所以有x1,x2是﹣x﹣﹣2a=3的两个解,即x1,x2是x2+(2a+3)x+4=0的两个解.得到x1+x2=﹣(2a+3),x1x2=4,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1+(舍去)或a=﹣1﹣.③﹣a>4,即a<﹣4时,f (x)=0最多只有两个解,不满足题意;综上所述,a=,或﹣1﹣.33.【解答】解:由题意得,a=﹣=﹣;表示了点A(﹣,)与点C(3x,0)的距离,表示了点B(,)与点C(3x,0)的距离,如下图,结合图象可得,﹣|AB|<﹣<|AB|,即﹣1<﹣<1,故实数a的取值范围是(﹣1,1).故答案为:(﹣1,1).34.【解答】解:∵f(x)=1+x﹣+﹣+...﹣+,f′(x)=1﹣x+x2﹣ (x2012)=>0,此时函数单调递增,∵f(0)=1>0,f(﹣1)=﹣﹣<0,∴函数f(x)存在一个唯一的零点,设函数f(x)的零点为x1,∴根据根的存在性定理可知x1∈(﹣1,0).∵g(x)=1﹣x+﹣+…+﹣,g′(x)=﹣1+x﹣x2﹣…﹣x2012==﹣<0,即函数单调递减,∵g(1)=>0,g(2)=,设函数g(x)存在唯一的一个零点x2,∴根据根的存在性定理可知x2∈(1,2).由F(x)=f(x+3)g(x﹣4)=0,则f(x+3)=0或g(x﹣4)=0.由x+3∈(﹣1,0).得﹣1<x+3<0,即﹣4<x<﹣3,∴函数f(x+3)的零点在(﹣4,﹣3).由x﹣4∈(1,2).,得1<x﹣4<2,即5<x<6,∴函数g(x﹣4)的零点在(5,6).即函数F(x)=f(x+3)•g(x﹣4)的零点在(﹣4,﹣3)和(5,6)内,∵F(x)的零点均在区间[a,b],(a<b,a,b∈Z),∴b≥6,a≤﹣4,∴b﹣a≥10,即b﹣a的最小值是10.35.【解答】解:,是由和y=﹣log2x,两个函数中,每个函数都是减函数,所以,函数为减函数.∵正实数a,b,c是公差为正数的等差数列,∴不妨设0<a<b<c∵f(a)f(b)f(c)<0则f(a)<0,f(b)<0,f(c)<0 或者f(a)>0,f(b)>0,f(c)<0综合以上两种可能,恒有f(c)<0所以可能有①d<a;②d<b;④d<c,正确.故答案为:3.三.解答题(共5小题)36.【解答】解:(1)函数h(x)=f(x)﹣g(x)在上有且仅有一个零点.证明如下:函数f(x)=lnx﹣ax 的定义域为(0,+∞),由,可得函数g(x)的定义域为(﹣∞,),∴函数h(x)=f(x)﹣g (x)的定义域为(0,).h(x)=f(x)﹣g(x)=lnx﹣ax﹣ln()+2﹣ax.h′(x)=,当且仅当时等号成立,因此h(x)在上单调递增,又,故函数h(x)=f(x)﹣g(x)在上有且仅有一个零点;证明:(2)由(1)可知h(x)在上单调递增,且,故当时,h(x)<0,即f(x)<g(x);当时,h(x)>0,即f(x)>g(x).∵,∴f(a1)<g(a1)=f(a2),若,则由,且f(x)在上单调递减,知,即,这与矛盾,故,而当时,f(x)单调递增,故;同理可证,…,,故数列{a n}为单调递增数列且所有项均小于,因此对于任意的i,j∈N*,均有.37.【解答】解:(1)由題意,令g(x)=e x﹣mx+m,(m>0)则g'(x)=e x﹣m,令g'(x)>0,解得x>lnm.所以g(x)在(lnm,+∞)上单调递增,令g'(x)<0,解得x<lnm,所以g(x)在(﹣∞,lnm)上单调递减,则当x=lnm时,函数取得极小值,同时也是最小值g(x)min=g(lnm)=m﹣mlnm+m=m(2﹣lnm)①当m(2﹣lnm)>0,即0<m<e2时,f(x)的图象与直线l无交点,②当m(2﹣lnm)=0,即m=e2时f(x)的图象与直线l只有一个交点.③当m(2﹣lnm)<0,即m>e2时f(x)的图象与直线l有两个交点.综上所述,当0<m<e2时,f(x)的图象与直线l无交点;m=e2时f(x)的图象与直线l只有一个交点,m>e2时f(x)的图象与直线l有两个交点.(2)证明:令φ(x)=g(lnm+x)﹣g(lnm﹣x)=me x﹣me﹣x﹣2mx,(x>0)φ′(x)=m(e x+e﹣x﹣2)∵e x+e ﹣x≥2=2,∴φ'(x)≥0,即φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0∴x>0时,g(lnm+x)>g(lnm﹣x)恒成立,又0<x1<lnm<x2,∴lnm﹣x1>0,∴g(lnm+lnm﹣x1)>g(lnm﹣lnm+x1)即g(2lnm﹣x1)>g(x1),又g(x1)=g(x2)∴g(x2)<g(2lnm﹣x1)∵2lnm﹣x2>lnm,x2>lnm,y=g(x)在(lnm,+∞)上单调递增,∴x2<2lnm﹣x1即x1+x2<2lnm.38.【解答】解:(Ⅰ)f′(x)=1﹣ae x,①a≤0时,f′(x)>0,f(x)在R上递增,不合题意,舍去,②当a>0时,令f′(x)>0,解得x<﹣lna;令f′(x)<0,解得x>﹣lna;故f(x)在(﹣∞,﹣lna)单调递增,在(﹣lna,+∞)上单调递减,由函数y=f(x)有两个零点x1,x2(x1<x2),其必要条件为:a>0且f(﹣lna)=﹣lna>0,即0<a<1,此时,﹣1<﹣lna<2﹣2lna,且f(﹣1)=﹣1﹣+1=﹣<0,令F(a)=f(2﹣2lna)=2﹣2lna﹣+1=3﹣2lna﹣,(0<a<1),则F′(a)=﹣+=>0,F(a)在(0,1)上单调递增,所以,F(a)<F(1)=3﹣e2<0,即f(2﹣2lna)<0,故a的取值范围是(0,1).(Ⅱ)令f(x)=0⇒a=,令g(x)=,g′(x)=﹣xe﹣x,则g(x)在(﹣∞,0)单调递增,在(0,+∞)单调递减,由(Ⅰ)知0<a<1,故有﹣1<x1<0<x2,令h(x)=g(﹣x)﹣g(x),(﹣1<x<0),h(x)=(1﹣x)e x﹣(1+x)e﹣x,(﹣1<x<0),h′(x)=﹣xe x+xe﹣x=x(e﹣x﹣e x)<0,所以,h(x)在(﹣1,0)单调递减,故h(x)>h(0)=0,故当﹣1<x<0时,g(﹣x)﹣g(x)>0,所以g(﹣x1)>g(x1),而g(x1)=g(x2)=a,故g(﹣x1)>g(x2),又g(x)在(0,+∞)单调递减,﹣x1>0,x2>0,所以﹣x1<x2,即x1+x2>0,故e+e≥2=2e>2.39.【解答】解:(1)当x<0时,f(x)=﹣x2.是增函数,且f(x)<0=f(0),故当x≥0时,f(x)为增函数,即f′(x)≥0恒成立,函数的导数f′(x)=+2ax﹣2a=+2a(x﹣1)=(1﹣x)(﹣2a)≥0恒成立,当x≥1时,1﹣x≤0,此时相应﹣2a≤0恒成立,即2a≥恒成立,即2a≥()max=恒成立,当x≤1时,1﹣x≥0,此时相应﹣2a≥0恒成立,即2a≤恒成立,即2a≤()min=恒成立,则2a=,即a=.(2)若k≤0,则g(x)在R上是增函数,此时g(x)最多有一个零点,不可能有三个零点,则不满足条件.故k>0,当x<0时,g(x)=﹣x2﹣kx有一个零点﹣k,g(0)=f(0)﹣0=0,故0也是故g(x)的一个零点,故当x>0时,g(x)有且只有一个零点,即g(x)=0有且只有一个解,即+﹣﹣kx=0,得+﹣=kx,(x>0),则k=+﹣,在x>0时有且只有一个根,即y=k与函数h(x)=+﹣,在x >0时有且只有一个交点,h′(x)=﹣+,由h′(x)>0得﹣+>0,即<得e x>2e,得x>ln2e=1+ln2,此时函数递增,由h′(x)<0得﹣+<0,即>得e x<2e,得0<x<ln2e=1+ln2,此时函数递减,即当x=1+ln2时,函数取得极小值,此时极小值为h(1+ln2)=+﹣=++﹣=++﹣=,h(0)=1+0﹣=1﹣,作出h(x)的图象如图,要使y=k与函数h(x)=+﹣,在x>0时有且只有一个交点,则k=或k≥1﹣,即实数k的取值范围是{}∪[1﹣,+∞).40.【解答】解:(1)a =时,f(x)=|log25(x+1)﹣|+2,x∈[0,24],令|log25(x+1)﹣|=0,解得x=4,因此:一天中第4个时刻该市的空气污染指数最低.(2)令f(x)=|log25(x+1)﹣a|+2a+1=,当x∈(0,25a﹣1]时,f(x)=3a+1﹣log25(x+1)单调递减,∴f(x)<f(0)=3a+1.当x∈[25a﹣1,24)时,f(x)=a+1+log25(x+1)单调递增,∴f(x)≤f(24)=a+1+1.联立,解得0<a ≤.可得a ∈.因此调节参数a应控制在范围.第21页(共21页)。
高一数学函数练习题有关高一数学函数练习题11.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)<0,则方程f(x)=0在[-1,1]内( )A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根解析:由f -12f 12<0得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,∴f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.答案:C2.(2014长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:x 1 2 3 4 5 6f(x) 136.13 15.552 -3.92 10.88 -52.488 -232.064则函数f(x)存在零点的区间有( )A.区间[1,2]和[2,3]B.区间[2,3]和[3,4]C.区间[2,3]、[3,4]和[4,5]D.区间[3,4]、[4,5]和[5,6]解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,∴f(x)在区间[2,3],[3,4],[4,5]上都存在零点.答案:C3.若a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是( )A.(3.5,+∞)B.(1,+∞)C.(4,+∞)D.(4.5,+∞)解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm≥4,又n≠m,故(n+m)1n+1m>4,则1n+1m>1.答案:B4.(2014昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f′(x)的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:函数f(x)的导数为f′(x)=1x,所以g(x)=f(x)-f′(x)=ln x-1x.因为g(1)=ln 1-1=-1<0,g(2)=ln 2-12="">0,所以函数g(x)=f(x)-f′(x)的零点所在的区间为(1,2).故选B.答案:B5.已知函数f(x)=2x-1,x>0,-x2-2x,x≤0,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.解析:画出f(x)=2x-1,x>0,-x2-2x,x≤0,的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0<m<1,即m∈(0,1).< p="">答案:(0,1)有关高一数学函数练习题21.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的'函数模型来反映该公司调整后利润y与产量x的关系,则可选用( )A.一次函数B.二次函数C.指数型函数D.对数型函数解析:选D.一次函数保持均匀的增长,不符合题意;二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢.2.某种植物生长发育的数量y与时间x的关系如下表:x 1 2 3 …y 1 3 8 …则下面的函数关系式中,能表达这种关系的是( )A.y=2x-1B.y=x2-1C.y=2x-1D.y=1.5x2-2.5x+2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=________,面积S=________.解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12=-12(x-1)2+1212,∴当x=1时,Smax=1212. 答案:1 1212。
高一数学30道数学函数题
在高一数学中,数学函数是一个非常重要的概念。
它是数学的基础,也是其他学科的基础。
因此,我们需要掌握数学函数的概念和特性,以便在学习其他学科时能够更好地应用它们。
下面是30道高一数学函数题,希望能够帮助大家更好地理解数学函数。
1. 若函数f(x)=2x+1,求f(3)的值。
解:将x=3代入f(x)=2x+1中,得到f(3)=2×3+1=7。
2. 若函数f(x)=3x-2,求f(-1)的值。
解:将x=-1代入f(x)=3x-2中,得到f(-1)=3×(-1)-2=-5。
3. 若函数f(x)=x^2+1,求f(2)的值。
解:将x=2代入f(x)=x^2+1中,得到f(2)=2^2+1=5。
4. 若函数f(x)=x^2-3x+2,求f(4)的值。
解:将x=4代入f(x)=x^2-3x+2中,得到f(4)=4^2-3×4+2=6。
5. 若函数f(x)=4x-3,求f(0)的值。
解:将x=0代入f(x)=4x-3中,得到f(0)=-3。
6. 若函数f(x)=5-2x,求f(1)的值。
解:将x=1代入f(x)=5-2x中,得到f(1)=5-2×1=3。
7. 若函数f(x)=2x^2-3x+1,求f(-1)的值。
解:将x=-1代入f(x)=2x^2-3x+1中,得到f(-1)=2×(-1)^2-3×(-1)+1=6。
8. 若函数f(x)=x^2-2x,求f(3)的值。
解:将x=3代入f(x)=x^2-2x中,得到f(3)=3^2-2×3=3。
解:将x=2代入f(x)=3x+2中,得到f(2)=3×2+2=8。
10. 若函数f(x)=2x^2-5x+3,求f(1)的值。
解:将x=1代入f(x)=2x^2-5x+3中,得到f(1)=2×1^2-5×1+3=0。
11. 若函数f(x)=x^2+2x-1,求f(-2)的值。
解:将x=-2代入f(x)=x^2+2x-1中,得到f(-2)=(-2)^2+2×(-2)-1=1。
12. 若函数f(x)=3x-4,求f(3)的值。
解:将x=3代入f(x)=3x-4中,得到f(3)=3×3-4=5。
13. 若函数f(x)=x^2-4x+3,求f(2)的值。
解:将x=2代入f(x)=x^2-4x+3中,得到f(2)=2^2-4×2+3=-3。
14. 若函数f(x)=2x-1,求f(1)的值。
解:将x=1代入f(x)=2x-1中,得到f(1)=2×1-1=1。
15. 若函数f(x)=x^2-3,求f(4)的值。
解:将x=4代入f(x)=x^2-3中,得到f(4)=4^2-3=13。
16. 若函数f(x)=3-2x,求f(0)的值。
解:将x=0代入f(x)=3-2x中,得到f(0)=3。
17. 若函数f(x)=x^2+3x+2,求f(-1)的值。
解:将x=-1代入f(x)=x^2+3x+2中,得到f(-1)=(-1)^2+3×(-1)+2=0。
18. 若函数f(x)=2x+3,求f(-1)的值。
解:将x=-1代入f(x)=2x+3中,得到f(-1)=2×(-1)+3=1。
解:将x=1代入f(x)=x^2-2中,得到f(1)=1^2-2=-1。
20. 若函数f(x)=4x-1,求f(2)的值。
解:将x=2代入f(x)=4x-1中,得到f(2)=4×2-1=7。
21. 若函数f(x)=x^2+4x+3,求f(-2)的值。
解:将x=-2代入f(x)=x^2+4x+3中,得到f(-2)=(-2)^2+4×(-2)+3=-1。
22. 若函数f(x)=3x-1,求f(1)的值。
解:将x=1代入f(x)=3x-1中,得到f(1)=3×1-1=2。
23. 若函数f(x)=x^2+2,求f(0)的值。
解:将x=0代入f(x)=x^2+2中,得到f(0)=2。
24. 若函数f(x)=2x-3,求f(-1)的值。
解:将x=-1代入f(x)=2x-3中,得到f(-1)=2×(-1)-3=-5。
25. 若函数f(x)=x^2-1,求f(2)的值。
解:将x=2代入f(x)=x^2-1中,得到f(2)=2^2-1=3。
26. 若函数f(x)=4-3x,求f(1)的值。
解:将x=1代入f(x)=4-3x中,得到f(1)=4-3×1=1。
27. 若函数f(x)=x^2+1,求f(-1)的值。
解:将x=-1代入f(x)=x^2+1中,得到f(-1)=(-1)^2+1=2。
28. 若函数f(x)=3x+1,求f(2)的值。
解:将x=2代入f(x)=3x+1中,得到f(2)=3×2+1=7。
29. 若函数f(x)=x^2-3x,求f(3)的值。
解:将x=3代入f(x)=x^2-3x中,得到f(3)=3^2-3×3=0。
30. 若函数f(x)=2x+1,求f(-1)的值。
解:将x=-1代入f(x)=2x+1中,得到f(-1)=2×(-1)+1=-1。
以上就是30道高一数学函数题,希望大家能够认真思考,掌握数学函数的概念和特性,提高自己的数学水平。