(word完整版)高一数学函数经典习题及答案
- 格式:doc
- 大小:476.51 KB
- 文档页数:6
(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式,211222(log )7log 30x x ++≤求的最大值与最小值及相应x 值.22()log log 42x xf x =⋅2.(14分)已知定义域为的函数是奇函数R 2()12x xaf x -+=+ (1)求值;a (2)判断并证明该函数在定义域上的单调性;R (3)若对任意的,不等式恒成立,求实数的取值范围;t R ∈22(2)(2)0f t t f t k -+-<k 3. (本小题满分10分)已知定义在区间上的函数为奇函数,且.(1,1)-2()1ax b f x x +=+12()25f =(1) 求实数,的值;a b (2) 用定义证明:函数在区间上是增函数;()f x (1,1)-(3) 解关于的不等式.t (1)()0f t f t -+<4. (14分)定义在R 上的函数f(x)对任意实数a,b ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)++∈R <0,(1)求f(1) (2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+(b≥1),4b(I)求f(x)的最小值g(b);(II)求g(b)的最大值M 。
6. (12分)设函数,当点是函数图象上的点时,()log (3)(0,1)a f x x a a a =->≠且(,)P x y ()y f x =点是函数图象上的点.(2,)Q x a y --()y g x =(1)写出函数的解析式;()y g x =(2)若当时,恒有,试确定的取值范围;[2,3]x a a ∈++|()()|1f x g x -…a (3)把的图象向左平移个单位得到的图象,函数()y g x =a ()y h x =,()在的最大值为,求的值.1()22()()()2h x h x h x F x a a a ---=-+0,1a a >≠且1[,4]454a 7. (12分)设函数.124()lg ()3xxa f x a R ++=∈(1)当时,求的定义域;2a =-()f x (2)如果时,有意义,试确定的取值范围;(,1)x ∈-∞-()f x a (3)如果,求证:当时,有.01a <<0x ≠2()(2)f x f x <8. (本题满分14分)已知幂函数满足。
函数的最值问题(高一)一.填空题:1. f ( x)3x 5, x[3,6] 的最大值是。
f ( x)11,3 的最小值是。
, xx2.函数 y 12 4x x 2 的最小值是,最大值是 3.函数 y1的最大值是,此时 x2 x 2 8x104.函数 y 2x 3 3, 2 的最小值是,最大值是x , x15.函数 y 3 2, 1 的最小值是,最大值是x , xx 16.函数 y= x 2 - 的最小值是。
y x 1 2x 的最大值是x 27.函数 y=|x+1| –|2-x| 的最大值是 最小值是.8.函数 f x2 在 [2,6] 上的最大值是 最小值是。
x 19.函数 y= 3x( x ≥ 0)的值域是 ______________.1 2x10.二次函数 y=-x 2+4x 的最大值11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。
12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值13.函数 f ( x ) =1 的最大值是y 2x 22x 5的最大值是1 x(1 x)x 2 x 114. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是17. 若 f(x)= x2+ax+3 在区间 [1,4] 有最大值 10,则 a 的值为:18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x )m 恒成立, m 范围是。
1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学集合函数部分试题1 已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( )A 、3,1x y ==-B 、(3,1)-C 、{3,1}-D 、{(3,1)}- 2 下列各组函数是同一函数的是 ( )①2)(-=x x f 与24)(2+-=x x x g ;②()f x x =与2()g x x =; ③0()f x x =与1)(=x g ; ④2()21f x x x =--与2()21g t t t =--.A .①②B .②③C .②④D .①④3 若奇函数)(x f 在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A .是减函数,有最小值-7B .是增函数,有最小值-7C .是减函数,有最大值-7D .是增函数,有最大值-7 5.函数()245f x x mx =-+在区间[)2,-+∞上是增函数,则()1f 的取值范围是( )A. ()125f ≥B. ()125f =C. ()125f ≤D. ()125f > 6.函数1()322x f x x =+-的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0)C .(0,1)D .(1,2) 7.已知集合}12|{},1|{>=<=x x N x x M ,则MN =( ) A .φ B .}0|{<x x C .}1|{<x x D .}10|{<<x x10. 若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数11.函数f (x )=4x +12x 的图象( ) A .关于原点对称 B .关于直线y =x 对称 C .关于x 轴对称 D .关于y 轴对称13 .函数①y =|x |;②y =|x |x ;③y =x 2|x |;④y =x +x |x |在(-∞,0)上为增函数的有______(填序号).14 .已知f (x )是奇函数,且x ≥0时,f (x )=x (1-x ),则x <0时,f (x )=________.15. 若函数f (x )=x2x +1x -a 为奇函数,则a =________.16. 已知函数f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的单调递增区间18. 设f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .f (x )+||g x是偶函数 B .f (x )-||g x 是奇函数 C.||f x +g (x )是偶函数 D.||f x -g (x )是奇函数19. 已知函数f (x )=ax 2+bx +3a +b 是偶函数,且知其定义域为[a -1,2a ],则( )A .a =3,b =0 B .a =-1,b =0C .a =1,b =0D .a =13,b =0 2方程x 2-|x |+a -1=0有四个相异实根,求实数a 的取值范围.3设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.4. (1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求实数a 的值;(6分)(2)A ={x|-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求实数m 的取值范围。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。
【考点】函数的概念,函数的奇偶性。
点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。
4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。
在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。
【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
函数考试题库及答案高一一、选择题(每题3分,共30分)1. 函数f(x) = 2x + 3的定义域是:A. (-∞, +∞)B. [0, +∞)C. (0, +∞)D. [3, +∞)答案:A2. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:A3. 函数y = 3x^2 - 6x + 2的图像开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A4. 下列哪个函数是奇函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 - 1D. f(x) = x答案:B5. 函数y = 2x + 1的反函数是:A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = 2x + 1答案:A6. 若函数f(x) = x^3 + 2x^2 - 5x + 1,则f'(x)是:A. 3x^2 + 4x - 5B. 3x^2 + 4x + 5C. 3x^2 - 4x + 5D. 3x^2 - 4x - 5答案:A7. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B8. 若函数f(x) = ln(x),则f'(x)是:A. 1/xB. xC. ln(x)D. x^2答案:A9. 函数y = e^x的图像是:A. 直线B. 抛物线C. 指数曲线D. 对称曲线答案:C10. 函数y = 3x^2 - 6x + 2的顶点坐标是:A. (1, -1)B. (1, 5)C. (3, 5)D. (3, -1)答案:B二、填空题(每题4分,共20分)1. 函数f(x) = x^2 - 6x + 9的最小值是______。
答案:02. 若f(x) = 2x - 3,则f(-1) = ______。
答案:-53. 函数y = 1 / x的图像关于______对称。
函数与基本初等函数一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈R B .y =sin x ,x ∈RC .y =x ,x ∈RD .y =(12)x ,x ∈R2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2x B.12x C .log 12x D .2x -23.已知函数f (x )=ax 3+bx 2+c 是奇函数,则( )A .b =c =0B .a =0C .b =0,a ≠0D .c =0 4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为( )A .f (x )=x 2-4x +4B .f (x )=x 2-4x +5C .f (x )=x 2-4x -5D .f (x )=x 2+4x +55.函数f (x )=3x 21-x+lg(3x +1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13) D .(-∞,-13) 6.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数7.设奇函数f (x )在(0,+∞)内为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)8.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12b ,(12)c =log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c二、填空题9.函数y =log 12x +2的定义域是____________.10.已知函数f (x )=a x +b 的图象经过点(-2,134),其反函数y =f -1(x )的图象经过点(5,1),则f (x )的解析式是________.11.函数f (x )=ln 1+ax1+2x(a ≠2)为奇函数,则实数a 等于________.12.方程x 2-2ax +4=0的两根均大于1,则实数a 的范围是________.13.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.14.函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是________. 三、解答题15.设f (x )是奇函数,g (x )是偶函数,并且f (x )-g (x )=x 2-x ,求f (x ),g (x ).16.设不等式2(log 12x )2+9(log 12x )+9≤0的解集为M ,求当x ∈M 时,函数f (x )=(log 2x 2)(log 2x8)的最大、最小值.17.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.18.设函数f (x )=ax 2+1bx +c是奇函数(a ,b ,c 都是整数),且f (1)=2,f (2)<3.(1)求a ,b ,c 的值;(2)当x <0,f (x )的单调性如何?用单调性定义证明你的结论.参考答案1 B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,只是减函数;故选A.2 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以,a =2,故f (x )=log 2x ,选A.3 ∵f (x )是奇函数,∴f (0)=0,∴c =0.∴-ax 3-bx 2=-ax 3+bx 2,∴b =0,故选A. 4 因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x );当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5. 5 ⎩⎨⎧1-x >03x +1>0,解得-13<x<1.故选B.6 令x =0,得f (0)=2f (0)+1,f (0)=-1,所以f (x -x )=f (x )+f (-x )+1=-1,而f (x )+f (-x )+1+1=0,即 f (x )+1=-,所以f (x )+1为奇函数,故选C. 7因为f (x )是奇函数,所以f (-x )=-f (x ),于是不等式变为2f (x )x<0,根据函数的单调性和奇偶性,画出函数的示意图(图略),可知不等式2f (x )x <0的解集为(-1,0)∪(0,1). 8如下图:∴a <b <c . A9 (0,4] 10 f (x )=2x +3 11依题意有f (-x )+f (x )=ln1-ax1-2x+ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax 1+2x =1,故1-a 2x 2=1-4x 2,解得a 2=4,但a ≠2,故a =-2.12 解法一:利用韦达定理,设方程x 2-2ax +4=0的两根为x 1、x 2,则⎩⎨⎧(x 1-1)(x 2-1)>0,(x 1-1)+(x 2-1)>0,解之得2≤a <52. 13 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称.∴2a +ab =0⇒b =-2,∴f (x )=-2x 2+2a 2,且值域为(-∞,4],∴2a 2=4,∴f (x )=-2x 2+4. -2x 2+414设g (x )=3x 2-ax +5,已知⎩⎨⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.15 f (x )为奇函数,∴f (-x )=-f (x );g (x )为偶数,∴g (-x )=g (x ).f (x )-g (x )=x 2-x∴f (-x )-g (-x )=x 2+x从而-f (x )-g (x )=x 2+x ,即f (x )+g (x )=-x 2-x ,16 ∵2(log 12x )2+9(log 12x )+9≤0,∴(2log 12x +3)(log 12x +3)≤0.∴-3≤log 12x ≤-32.即log 12(12)-3≤log 12x ≤log 12(12)-32∴(12)-32≤x ≤(12)-3,即22≤x ≤8.从而M =.又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴32≤log 2x ≤3.∴当log 2x =2,即x =4时y min =-1;当log 2x =3,即x =8时,y max =0.⎩⎨⎧ f (x )-g (x )=x 2-x f (x )+g (x )=-x 2-x ⇒⎩⎨⎧f (x )=-xg (x )=-x 2 17 (1)求f (x )的解析式;(2)若g (x )=f (x )·x +ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.(1)设f (x )图象上任意一点的坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上.∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x .(2)g (x )=(x +1x )·x +ax ,即g (x )=x 2+ax +1.g (x )在(0,2]上递减⇒-a 2≥2,∴a ≤-4.18 (1)由f (x )=ax 2+1bx +c是奇函数,得f (-x )=-f (x )对定义域内x 恒成立,则a (-x )2+1b (-x )+c =-ax 2+1bx +c ⇒-bx +c =-(bx +c )对定义域内x 恒成立,即c =0.又⎩⎨⎧f (1)=2f (2)<3⇒⎩⎪⎨⎪⎧a +1b =2 ①4a +12b <3 ②由①得a =2b -1代入②得2b -32b<0⇒0<b <32,又a ,b ,c 是整数,得b =a =1.(2)由(1)知,f (x )=x 2+1x =x +1x,当x <0,f (x )在(-∞,-1]上单调递增,在上单调递增.同理,可证f (x )在[-1,0)上单调递减.。
高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)(1)(2)(3)(4)7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
指数函数与对数函数求以下函数的定义域、值域:11x2x x2x ( 1)2x1y2y 1 ( ) 3 y 341 28)=(2()()1log21x( 6)y log3 (6 x 3x22)定义域( 5)f (x)1,x x7.函数y a x在 [ 0,1] 上的最大值与最小值这和为3,则a=()8.假如函数f ( x) lg[ x( x 3) 1], x[1,3] ,那么 f (x) 的最大值是( A )22A . 0B .11C.D. 1 429.函数 y=- e x的图象()( A )与 y=e x的图象对于 y 轴对称(B) 与 y= e x的图象对于坐标原点对称--x 的图象对于坐标原点对称( C)与 y= e x的图象对于 y 轴对称(D) 与 y= e10.函数y log 21的图像大概是xy y y yo x o x o x oxA B C D11.将函数y2x1的图象按向量 a 平移获得函数 y2x 1的图象,则()A .a(1, 1)B.a (1,1)C.a (11),D.a ( 11),12.方程4x2x20 的解是__________.13.设f (x) lg(2f ( x)0 的 x 的取值范围是()a) 是奇函数,则使1xA.( 1,0)B.(0,1)C.(,0)D.( ,0) U(1, )1a2 x( a0 且a1).14.函数ya2x1A是奇函数B C既是奇函数又是偶函数D 是偶函数是非奇非偶函数15.函数y log 1 ( x25x 6) 的单一增区间为()2A .5,B.(3,) C.5D.(,2) 2,216.函数f ( x)定义在实数集R 上, f (x y) f ( x) f ( y) ,且当x0 时, f (x)0,则 f (x)A 是奇数且在 R 上是单一增函数B是奇数且在R 上是单一减函数C 是偶函数且在R 上是单一减函数D是偶函数且在R 上不是单一函数17.已知函数 f ( x) 知足: x4 ,则 f (x) = ( 1 ) x ;当 x 4 时 f ( x) = f ( x 1) ,则2f (2 log 2 3) =1 B1C1 D3 A128824(),18.已知函数 f ( x )log 2 x x 0则 f [ f ( 1)]的值是( B )3x(x0),411A . 9B . 9C .- 9D .9提示: f ( 1) log 2 12 , f [ f ( 1)] f ( 2) 321444 9f ( x 3)( x 6) 1) 的值为19.若 f (x)(x,则 f ( ()log 2 x 6)A 1B 2C 3D 4比较大小1 1. 51.设 y 140.9 , y 2 80.48 , y 3,则 ()2A. y 3 y 1 y 2 B y 2y 1 y 3 C y 1 y 2 y 3 D y 1 y 3 y 2 】2.下边不等式建立的是 ()A . log 3 2 log 2 3 log 2 5B . log 3 2 log 2 5 log 2 3C . log 2 3 log 3 2 log 2 5D . log 2 3log 2 5 log 3 23.若 0 xy 1 ,则()A . 3y3xB . log x 3 log y 3C . log 4 x log 4 yD . ( 1)x( 1) y441 0.214.设 alog 1 3 , b, c23,则()32A . a b cB . c b aC . c a bD . b a c5.以下四个数中的最大者是()(A) (ln2)2(C) ln2(D) ln2(B) ln(ln2)6.若 alog 3 π, b log 7 6, c log 2 0.8 ,则()(A )a>b >c ( B ) b>a >c ( C ) c>a >b( D ) b>c>a7.已知 log 1 blog 1 a log 1 c ,则 ()222A . 2b2 a 2c B . 2a 2b 2c C . 2c 2b 2a D . 2c 2a 2b8.设 3x1,则()7A .- 2<x< - 1B .- 3<x< - 2C .- 1<x<0D . 0<x<19.已知函数y log 1 x 与 y kx 的图象有公共点 A ,且点 A 的横坐标为 2,则 k ()41 1 1 1 A .B .C .D .44224x,x ≤ ,10.函数 f ( x)24 x ,的图象和函数 g(x) log 2 x 的图象的交点个数是 ( )x3 x 1A .4B .3C . 2D . 1。
〔数学1必修〕函数及其表示一、选择题1.判断以下各组中的两个函数是同一函数的为〔 〕⑴y 1(x3)(x5)x5;x 3,y 2⑵y 1x 1 x 1,y 2 (x1)(x1);⑶f(x) x ,g(x) x2;⑷f(x)3x 4x 3 ,F(x) x 3x1; ⑸f 1(x)( 2x 5) 2,f 2(x) 2x5。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2 f(x)的图象与直线 x 1 的公共点数目是〔〕.函数yA . 1B . 0C . 0 或 1 1 2D .或3.集合A1,2,3,k ,B 4,7,a 4,a 23a ,且aN *,x A,y B使B 中元素y 3x 1 和A 中的元素x 对应,那么a,k 的值分别为〔〕A .2,3B .3,4C .3,5D .2,5x2(x1)4.f(x)x 2( 1 x 2),假设f(x) 3 ,那么x 的值是〔〕2x(x 2)A .1B .1或3C .1,3或 3D .32 25.为了得到函数 y f(2x)的图象,可以把函数yf(12x)的图象适当平移,这个平移是〔 〕11个单位A .沿x 轴向右平移 个单位B .沿x 轴向右平移2C 1D 1个单位.沿x 轴向左平移 个单位.沿x 轴向左平移26.设f(x)x 2,(x 10)那么f(5) 的值为〔〕f[f(x 6)],(x 10)A .10B .11C .12D .13二、填空题1x1(x0),1.设函数f(x)2假设f(a)a.那么实数a的取值范围是。
1(x0).x2.函数y x2的定义域。
x243.假设二次函数y ax2bx c的图象与x轴交于A(2,0),B(4,0),且函数的最大值为9,那么这个二次函数的表达式是。
.函数(x1)0是_____________________。
的定义域4y x x5.函数f(x)x2x1的最小值是_________________。
三、解答题1.求函数f(x)3x1x1的定义域。
函 数 练 习 题
班级 姓名
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
⑵y =
⑶01
(21)111
y x x =+-++
-
2、设函数f x ()的定义域为[]01,,则函数f x ()2
的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x
+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域
5、求下列函数的值域:
⑴2
23y x x =+- ()x R ∈ ⑵2
23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31
1
x y x -=+ (5)x ≥
⑸
y = ⑹ 22
5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-
⑼
y ⑽
4y =
⑾y x =-
6、已知函数22
2()1
x ax b
f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式
1、 已知函数2
(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1
f x
g x x +=-,求()f x 与()g x 的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 2
23y x x =++ ⑵y = ⑶ 2
61y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,
()g x =; ⑸2
1)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、⑸
10、若函数()f x = 3
44
2
++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3
)
11
、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2
(2)10x a x a +-+->恒成立的x 的取值范围是( )
(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
13
、函数()f x = ) A 、[2,2]-
B 、(2,2)-
C 、(,2)(2,)-∞-+∞U
D 、{2,2}-
14、函数1
()(0)f x x x x
=+
≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数
15、函数2
2(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
16、已知函数f x ()的定义域是(]01,,则g x f x a f x a a ()()()()=+⋅--<≤1
2
0的定义域为 。
17、已知函数21mx n
y x +=
+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2
--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2
()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。
21、已知a R ∈,讨论关于x 的方程2680x x a -+-=的根的情况。
22、已知
1
13
a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-。
(1)求函数()g a 的表达式;(2)判断函数()g a 的单调性,并求()g a 的最小值。
23、定义在R 上的函数(),(0)0y f x f =≠且,当0x >时,()1f x >,且对任意,a b R ∈,()()()f a b f a f b +=。
⑴求(0)f ; ⑵求证:对任意,()0x R f x ∈>有;⑶求证:()f x 在R 上是增函数; ⑷若2
()(2)1f x f x x ->,
求x 的取值范围。
函 数 练 习 题 答 案
一、函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1
{|220,,1}2
x x x x x -≤≤≠≠
≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32
-∞-+∞U 4、11m -≤≤ 二、函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3
y ∈ (5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2
()21f x x x =-- 3、4()33
f x x =+
4
、()(1f x x =-
;(10)()(10)
x x f x x x ⎧≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1]
8、(,2),(2,)-∞--+∞ (2,2]- 五、综合题:
C D B B D B
14
15、(,1]a a -+ 16、4m =± 3n = 17、1
2
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2
min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2
min ()()1f x f a a ==-- ,max ()(0)1f x f ==-
(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩
Q (,0]t ∈-∞时,2
()1g t t =+为减函数
∴
在[3,2]--上,2
()1g t t =+也为减函数
∴
min ()(2)5g t g =-=, max ()(3)10g t g =-=
20、21、22、(略)。