高一数学函数测试题
- 格式:doc
- 大小:211.50 KB
- 文档页数:4
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学第二章函数测试题一、选择题:1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、mm nna a a ÷= B 、nm n m aa a ⋅=⋅ C 、()nm m naa+= D 、01nna a-÷=2、已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若( )A .bB .-bC .b1D .-b13、.若集合M={y|y=2—x }, P={y|y=1x -}, M ∩P= ( )A .{y|y>1}B .{y|y ≥1}C .{y|y>0 }D .{y|y ≥0} 4、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31,则现在价格为8100元的计算机经 年后降为2400元. ( )A .14B .15C .16D .175、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >>7、在(2)l og (5)a b a -=-中,实数a 的取值范围是 ( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<8、有以下四个结论 ○1 l g(l g10)=0 ○2 l g(l ne)=0 ○3若10=l gx,则x=10 ○4 若e=l nx,则x=e 2, 其中正确的是 ( )A.○1○3 B.○2○4 C.○1○2 D. ○3○4 9、已知函数f(x)=2x ,则f(1-x)的图象为 ( )ABCD10、已知f(x)是偶函数,它在[0,+∞)上是减函数,若)1()(lg f x f >,则x 的取值范围( )A. )1,101(B.),1()101,0(+∞⋃C.)10,101( D.(0,1)∪(10,+∞) 11、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ( ) A.新加坡(270万) B.香港(560万) C.瑞士(700万) D.上海(1200万)12、若函数()lo g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为 ( ) A B C 、14 D 、12二、填空题: 13、()0.7522310.25816--⎛⎫+- ⎪⎝⎭-lg25-2lg2=___________ ____;14、1log 32<a (a>0且a ≠1),a 的取值范围为 ;15、已知函数f(x)=log 2(x-2)的值域是[1,log 214],那么函数f(x)的定义域是 ; 16、设0≤x ≤2,则函数5234)(21+∙-=-x x x f 的最大值是________,最小值是______.。
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
基本初等函数练习卷一、选择题(本大题共12小题,每小题5分,共60分) 1、函数1213log (1)(1)y x x -=++-的定义域是()A .(-1,0)B .(-1,1)C .(0,1)D .(0,1]2、下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是( )A .23y x = B .12xy ⎛⎫= ⎪⎝⎭C .y =ln xD .y =x 2+2x +33、已知x x f 26log )(=,则=)8(f ( )A.34 B. 8 C. 18 D.21 4、已知函数e 1,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩那么f (ln 2)的值是( )A .0B .1C .ln(ln 2)D .25、函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图象可能是( )A B C D6、设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则a ,b ,c 的大小关系是( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b 7、函数(为自然对数的底数)对任意实数、,都有( )A. B. C. D. 8、已知幂函数()f x 的图象经过点(4,2), 则下列命题正确的是( )A. ()f x 是偶函数B. ()f x 是单调递增函数C. ()fx 的值域为R D. ()f x 在定义域内有最大值9、若y=log a (2-ax)在[0,1]上是减函数,则a 的取值范围为( ) (A)(0,1) ( B)(1,2) (C)(0,2) (D)(1,+∞)10、已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b 取值范围( )()()()f x y f x f y =+()()()f x y f xf y =()()()fx y fx fy +=+()()()f x y f x f y +=y x e ()xf x e=yxyxyxy xA. 22,22⎡⎤-+⎣⎦B. (22,22)-+C. []1,3D. ()1,311、函数y =e|-ln x |-|x -1|的图象大致是( )12、给出幂函数①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x ;⑤f(x)=1x. 其中满足条件f 12()2x x +>12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( ) A .1个 B .2个 C .3个 D .4个 二、填空题(本大题共4小题,每小题4分,共16分)13、当a >0且a ≠1时,函数f (x)=a x -2-3必过定点 . 14、函数652-+-=x x y 的单调增区间是15、已知函数2()f x x bx c =++,对任意x R ∈都有(1)()f x f x +=-,则(2)f -、 (0)f 、(2)f 的大小顺序是 .16.下列说法中:① 若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数2b =; ② 20132013)(22-+-=x x x f 既是奇函数又是偶函数;③ 函数()()43ln 2--=x x x f 的减区间是⎪⎭⎫ ⎝⎛+∞,23;④ 已知()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f x y x f y y f x ⋅=⋅+⋅,则()f x 是奇函数。
函 数 练 习 题(一)班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x+(21)f x -的定义域是;函数1(2)f x+的定义域为。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x -=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高一数学全册试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若f(x) = 2x + 1,则f(-1)的值为:A. -1B. 1C. 3D. -33. 等差数列{an}的首项为2,公差为3,则a5的值为:A. 17B. 14C. 11D. 84. 以下哪个选项是不等式x^2 - 4x + 3 < 0的解集?A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)二、填空题(每题5分,共20分)5. 若函数f(x) = x^2 - 2x + 1,求f(1)的值为______。
6. 等比数列{bn}的首项为1,公比为2,则b3的值为______。
7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B的值为______。
8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。
三、解答题(每题10分,共60分)9. 已知函数f(x) = x^2 - 4x + 3,求该函数的最小值。
10. 计算定积分∫(0到1) (2x + 3)dx。
11. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5。
12. 求函数y = ln(x)在区间[1, e]上的值域。
13. 已知直线l:y = 3x + 2与圆C:(x - 2)^2 + (y - 3)^2 = 9相交,求交点坐标。
14. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
答案:一、选择题1. C2. D3. B4. A二、填空题5. 06. 87. {2, 3}8. (-1/2, 0)三、解答题9. 函数f(x) = x^2 - 4x + 3的最小值为f(2) = -1。
10. 定积分∫(0到1) (2x + 3)dx = (x^2 + 3x)|_0^1 = 4。
高一数学一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C 2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 4.设α角的终边上一点P 的坐标是)5sin,5(cos ππ,则α等于 ( )A .5πB .5cotπC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ5.将分针拨慢10分钟,则分钟转过的弧度数是( )A .3πB .-3πC .6πD .-6π6.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα7.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B ⊂AD .A ⊂B8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .4 9.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大≠ ≠≠C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角 10.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为 ( )A .2B .3C .1D .2311.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( )A .2)1cos 1sin 2(21R ⋅- B .1cos 1sin 212⋅RC .221RD .221cos 1sin R R ⋅⋅- 12.若α角的终边落在第三或第四象限,则2α的终边落在 ( )A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限二、填空题(每小题4分,共16分,请将答案填在横线上) 13.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角.14.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .15.已知α是第二象限角,且,4|2|≤+α则α的范围是 .16.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1) (2) (3)18.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′. 试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm? 21.已知集合A={}810,150|{},135|≤≤-︒⋅==∈︒⋅=k k B Z k k ββαα求与A ∩B 中角终边相同角的集合S.22.单位圆上两个动点M 、N ,同时从P (1,0)点出发,沿圆周运动,M 点按逆时针方向旋转6π弧度/秒,N 点按顺时针转3π弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.高一数学参考答案(一)一、1.B 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.A 10.A 11.D 12.B 二、13.三 14. )6,(ππ-15.]2,2(),23(πππ⋃--16.162C三、17.(1)}1359013545|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒αα;(2)}904590|{Z k k k ∈︒⋅+︒≤≤︒⋅αα;; (3)}360150360120|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒-αα.18.(1)设文字长、宽为l 米,则)(01454.0001454.01010m l =⨯==α; (2)设人离开字牌x 米,则)(275001454.04.02m l x ===.19.221021,220rr rS r-=⋅⋅=-=αα,当2,5==αr 时,)(252maxcm S =.20.设需x 秒上升100cm .则ππ15,100502460=∴=⨯⨯⨯x x (秒).21.}360k 1350360|{Z k k S ∈︒⋅=︒-︒-==ααα或.22.设从P (1,0)出发,t 秒后M 、N 第三次相遇,则πππ636=+t t ,故t =12(秒).故M 走了ππ2126=⨯(弧度),N 走了ππ4123=⨯(弧度).同步测试(2)任意角的三角函数及同角三角函数的基本关系式一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为 ( )A .ππ434或 B .ππ4745或C .ππ454或D .ππ474或2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( )A .正值B .负值C .零D .为能确定 3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-16234.函数1sectan sin cos 1sin1cos )(222---+-=x x xxxx x f 的值域是( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1} 5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α= ( )A .3-πB .3C .3-2πD .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22 D .217.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为 ( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 10.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-2 12.已知43cos sin =+αα,那么αα33cos sin -的值为( )A .2312825B .-2312825C .2312825或-2312825D .以上全错二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x xy cos lg 362+-=的定义域是_________.15.已知21tan -=x ,则1cos sin 3sin2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知.1cos sin ,1sin cos =-=+θθθθby a x by a x 求证:22222=+by ax .18.若xxx xx tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A 关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值. 20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值. 21已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直.求k 的值.22.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.高一数学参考答案(二)一、1.C 2.B 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C 二、13.23-14. ⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ 15.52 16.1 三、17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax.18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,ab ab bb a ba b =-=+=+-=βαβαcot ,tan ,sec ,sin 2222,ab aab a2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a ab.20.θθθθθθθ2424224sin 9sin 27sin 55sin 2sin 427cos 5cos 2-=--++-=-+,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,22.假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910-而2和910-不满足上式. 故这样的m 不存在.高一数学同步测试(3)—正、余弦的诱导公式一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .232.已知,)1514tan(a =-π那么=︒1992sin( ) A .21||aa + B .21aa + C .21aa +- D .211a+-3.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-6 4.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A .33 B .-33 C .3 D .-35.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形6.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关7.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .7 8.如果).cos(|cos |π+-=x x 则x 的取值范围是( ) A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ9.在△ABC 中,下列各表达式中为常数的是 ( )A .CB A sin )sin(++ B . AC B cos )cos(-+C .2tan2tanC B A ⋅+D .2sec2cos A C B ⋅+ 10.下列不等式上正确的是( )A .ππ74sin75sin> B .)7tan(815tanππ->C .)6sin()75sin(ππ->- D .)49cos()53cos(ππ->-11.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-12.若)cos()2sin(απαπ-=+,则α的取值集合为 ( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .14.已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 15.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .16.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 ,1)2001(=f 则=)2002(f .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.18.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x19.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.20.已知,3cos 3cot )(tan x x x f -=(1)求)(cot x f 的表达式;(2)求)33(-f 的值.21.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.22.已知:∑=+⋅=ni n i i S 1)32cos(ππ ,求.2002S 。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
x y o 高一数学第一章《函数》测验(9月23日)
时间:40分钟 满分:100分
班级 姓名 座号
一、判断题:每小题5分,共20分.下列结论中,正确的在后面的括号中打“∨”,错误的在后面的括号中打“╳” .
1. 已知A={}Z k k x x ∈-=,23|,则5∈A. ( ╳ )
2. 函数)(x f y =的图象有可能是如图所示的曲线. (╳ )
3.对于定义域为R 的奇函数)(x f ,一定有0)2()2(=+-f f 成立. (∨ )
4.函数x
x f 1)(=在),0()0,(+∞-∞Y 上为减函数. ( ╳ ) 二、选择题.每小题5分.每题都有且只有一个正确选项.
5.已知集合A ≠Φ,且A {2,3,4},则这样的集合A 共有( )个 ( B ) A.5 B.6 C.7 D.8
6.函数03()()2
2f x x x =-+的定义域是 ( D )
A . 3(2,)2-
B . (2,)-+∞
C .3(,)2+∞
D . 33(2,)(,)22
-⋃+∞
7.函数{}()1,1,1,2f x x x =+∈-的值域是 ( C ) A.0,2,3 B.30≤≤y C.}3,2,0{ D.]3,0[
8.由函数])5,0[(4)(2
∈-=x x x x f 的最大值与最小值可以得其值域为 ( C )
A .),4[+∞-
B . ]5,0[
C .]5,4[-
D .]0,4[-
9.函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 (B )
A .1+-x
B .1--x
C .1+x
D . 1-x
10.定义在R 上的偶函数()f x ,在(0,)+∞上是增函数,则 ( C )
A . (3)(4)()f f f π<-<-
B .()(4)(3)f f f π-<-<
C .(3)()(4)f f f π<-<-
D .(4)()(3)f f f π-<-<
三、 填空题.每小题5分.
11.已知函数=)(x f 21,0
2,0
x x x x +≤->,若17)(=x f ,则x = - 4 12.设},3|{2R x x y y M ∈-==,{}R x x y y N ∈+==,3|2,则=N M I {3}
13.函数)0(1)(≠-=x x
ax x f 是奇函数,则实数a 的值为 0 . 四、 解答题.写出必要的文字说明.
14.(10分)已知全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A ,C U B , (C U A)∩(C U B),C U (A ∪B),并指出其中相等的集合.
14. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};
C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B)
15.(12分)用单调性定义证明:函数2
)1(1)(-=x x f 在)1,(-∞上为增函数. 证明:在)1,(-∞上任取1x 、2x ,且1x <2x ,
而22212122222121)
1()1()1()1()1(1)1(1)()(-----=---=-x x x x x x x f x f 22211212)
1()1())(2(----+=x x x x x x 因为121<<x x ,可知0221<-+x x ,012>-x x ,0)1(21>-x ,0)1(2
2>-x ,
则0)()(21<-x f x f
所以)()(21x f x f <
所以函数在)1,(-∞上为增函数.
普通班16.已知函数)(1
1)(R x x x x f ∈-++=.(13分) (1)证明)(x f 函数是偶函数;
(2
)利用绝对值及分段函数知识,将函数解析式写成分段函数,然后画出函数图象;
(3)写出函数的值域.
(1))(
1111)(x f x x x x x f =++-=--++-=-
所以)(x f 是偶函数;
(2)⎪⎩
⎪⎨⎧>≤≤--<-=)1(2)11(2)1(2)(x x x x x x f
(3)函数的值域为:),2[+∞
实验班:16.当x 在实数集R 上任取值时,函数)(x f 相应的值等于x 2、2 、x 2-三个之中最大的那个值.
(1) 求)0(f 与)3(f ;(2分)
(2) 画出)(x f 的图象,写出)(x f 的解析式;(6分)
(3) 证明)(x f 是偶函数;(3分)
(4) 写出)(x f 的值域.(2分)
(1)2)0(=f ,6)3(=f .
(2)⎪⎩
⎪⎨⎧>≤≤--<-=)1(2)11(2)1(2)(x x x x x x f
(3)当1>x 时,1-<-x ,所以x x f x x x f 2)(,2)(2)(==--=-,有)()(x f x f =-; 当1-<x 时,1>-x ,所以x x f x x x f 2)(,2)(2)(-=-=-=-,有)()(x f x f =-; 当11≤≤-x 时,)(2)(x f x f ==-.
综上所述,对定义域中任意一个自变量x 都有)()(x f x f =-成立. 所以)(x f 是偶函数.
(4)函数的值域为:),2[+∞。