直角四面体的性质的证明
- 格式:doc
- 大小:111.50 KB
- 文档页数:7
第二十三章 特殊四面体的性质及应用【基础知识】特殊四面体包括垂心四面体(四条高线交于一点的四面体),直角四面体(有一个三面焦是直三面角的四面体,或过同一顶点的三条棱互相垂直的四面体),拟腰四面体(两对对棱相等的四面体),等面四面体(三对对棱相等的四面体),正四面体(六条棱长相等的四面体)等.特殊四面体除了具有一般四面体的性质外,还具有各自独特的性质. 1.垂心四面体性质1垂心四面体的对棱互相垂直.反之亦然.事实上,若四面体ABCD 为垂心四面体,垂心为H ,则AH ,BH 均与CD 垂直,从而AB CD ⊥. 同理,AC BD ⊥,AD BC ⊥.反之,由AB CD ⊥,过AB 作CD 的垂面交CD 于E ,设H 为ABE △的垂心,则AH BE ⊥,AH CD ⊥,所以AH 是面BCD 的垂线.同样,BH 是面ACD 的垂线,四面体ABCD 的每两条高交于一点,每三条高不共面,所以四条高必交于同一点.于是H 为四面体的垂心,即四面体为垂心四面体. 性质2垂心四面体的高过底面的垂心,反之亦然. 事实上,由性质1,设顶点A 在底面BCD 上的射影为F ,由于AB CD ⊥,所以AB 的射影BF CD ⊥.同样CF BD ⊥,即F 为BCD △的垂心.性质3垂心四面体对棱的平方和相等.反之亦然.事实上,由性质2,知A 在面BCD 上的射影F 为BCD △的垂心.设BF 交CD 于E ,则 22222222AC AD CF DF CE DE BC BD --==-=-,即有2222AC BD AD BC +=+. 同理,2222AC BD AB CD +=+.性质4垂心四面体连接对棱中点的线段相等.反之亦然. 事实上,由性质3,设E ,F 分别为AB ,CD 的中点,则()22222222222114222EF AF BF AB AC AD CD BC BD CD AB =+-=+-++--()222222AC BD BC AD AB CD =+=+=+.即证.反之,考察过对棱的相互平行的六个平面构成的平行六面体,六面体的棱长恰好等于连结四面体对棱中点的线段,因此,六面体的棱均相等,各面为菱形,菱形对角线(即四面体的对棱)互相垂直. 由于从性质1⇒性质2⇒性质3⇒性质4⇒性质1,从而性质2,3,4的反之亦然. 上述性质中的反之亦然,其实也是垂心四面体的四条判定定理.由性质4的证明中可知有 性质5垂心四面体的外接平行六面体(四面体的棱为平行六面体的侧面对角线)各面是菱形. 性质6平行于四面体任一组对棱的平面截其余四条棱的截口面为矩形. 性质7垂心四面体对棱之公垂线共点于垂心.性质8垂心四面体的外心、重心、垂心共线,且外心到重心的距离等于重心到垂心的距离. 2.直角四面体直角四面体有如下判定定理和性质:判定定理对棱都垂直且有一个面角为直角的四面体是直角四面体.事实上,在四面体ABCD 中,若90DAC ∠=︒,则由AD BC ⊥,知AC ⊥面ABC ,从而AD AB ⊥,即90DAB ∠=︒.又由AB CD ⊥,知AB ⊥面ACD ,有90BAC ∠=︒.即证. 推论1两组对棱垂直且有一个面角为直角的四面体是直角四面体.推论2四面体一顶点到对面的射影是该面的垂心,且该顶点的三面角的面角中有一个为直角,那么这个四面体是直角四面体.显然,上述判定定理及推论的逆命题也是直角四面体的性质.为了方便讨论直角四面体的一系列性质引进一些记号:设直角四面体PABC 的直三面角是三面角P ABC -,其体积为V ,棱PA a =,PB b =,PC c =.顶点x 所时的面的面积记为x S ;以棱y 为二面角棱的二面角大小记为y θ;四面体PABC 的内切球、外接球的半径分别记为x r .由于直角四面体是垂心四面体,因此,可得 性质1直角四面体具有垂心四面体的所有性质.性质2三对对棱中点的连线共点(设为G ,且此点称为四面体的重心)且互相平分;三对对棱中点的性质3不含直角的侧面三角形是锐角三角形,且这每一个面角的正切值等于这个面的面积的2倍与该面角所对的棱长平方之比;这每一面角的余弦值等于与此面共顶点的另两个面角余弦值之积. 性质4(1)cos cos cos P A BC B AC C AB S S S S θθθ=⋅+⋅+⋅; (2)cos A P BC S S θ=⋅,cos B P AC S S θ=⋅,cos C P AB S S θ=⋅; (3)222cos cos cos 1BC AC AB θθθ++=;(4)34AB BC AC θθθπ<++<π. 下面只给出(4)式的证明思路: 由(3)式有222cos cos cos cos cos cos cos 0BC AC AB AB AC AB AC θθθθθθθ---⋅+>==()(). 又cos cos 0AB AC θθ->,则cos cos 0AB AC θθ+<,故2AB AC θθπ<+.同理还有两式,相加即证(4)式左端.又()()cos cos AB AC AB AC θθθθ⎡⎤π++=-+⎣⎦,在[]0,π内余弦函数递减,有cos[]cos[]cos AB AC AB AC AB AC θθθθθθπ-+π--<-()=()(),即有()22cos cos BC AB AC θθθ⎡⎤>π-+⎣⎦,由此 即证得(4)式右端.由性质4(3)及幂平均、算术一几何平均值不等式,我们有推论(1)cos cos cos AB BC AC θθθ++(2)cos cos cos AB BC AC θθθ⋅⋅ (3)cos cos cos cos cos cos 1AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤;(4)sin sin sin AB BC AC θθθ++;(5)sin sin sin AB BC AC θθθ⋅⋅; (6)sin sin sin sin sin sin 2AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤.性质5含直角的侧面面积是它在不含直角的侧面上的射影面积与这不含直角的侧面面积的比例中项.性质62222P A B C S S S B =++.性质7二面角大小为θ(90θ≠︒)的两侧面中,含直角的侧面面积S 与不含直角的侧面面积P S 之比为cos θ.特别地,60θ=︒时,12P S S =∶∶;45θ=︒时,2P S S ∶;30θ=︒时,2P S S =∶;θ=P S S =∶ 性质P ABBCACS ==.性质916V abc ==性质10设S 为直角四面体的全面积,L 为6条棱长的乘积,则SL ≥. 性质11直角四面体的四顶点与其所对侧面重心的四条连线共点,共点于三对对棱中点连线的交点.亦即七线共点于直角四面体重心.性质12直角四面体的四顶点与其所对的侧面垂心的四条连线共点,共点于其直三面角顶点P ,此点为直角四面体的垂心.由此也可知直角四面体是垂心四面体.性质13非直三面角体的三顶点与其所对的侧面外心的三条连线共点,共点于不含直角的侧面三角形的重心.性质14过含直角的侧面三角形的外心,且与该侧面垂直的三直线共点,共点于直角四面体的外心. 性质15设A m 、B m 、C m 、P m 分别为直角四面体四顶点与所对面的重心的连线长(或称四面体的4条中线长),则()222222243A B C P m m m m a b c +++=++. 分析如图23-1,设1G 为侧面ABC △的重心,设1PG E α∠=.由三角线中线长公式,有()22214PE b c =+,()2222144AE a b c =++.又 图23-1ABEPG 1()2222222211222222cos 2cos 333333P P P P P PE PA AE m AE m AE m AE m m AE αα⎡⎤⎡⎤⎛⎫⎛⎫+=+-⋅⋅⋅+++⋅⋅⋅=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦由此即有()222219P m a b c =++.类似可求()2222199A m a b c =++,()2222199B m a b c =++,()2222199C m a b c =++,由此即获结论. 性质16R =,且与对棱中点的连线长相等;外接球的球心是分别过直三面角的三条棱与其所对棱中点的三个平面的公共点.性质17()2AB C P A B C P S S S S abcr S S S S a b c ++-==+++++;内切球的球心是其棱不共顶点的三个二面角平分面的公共点. 性质18()2AB C P P A B C P S S S S abcr S S S S a b c+++==++-++; ()2AP B C A B C P A S S S S abcr S S S S b c a +--==++-+-; ()2BP A C B A C P B S S S S abcr S S S S a c b+--==++-+-; ()2CP A B C A B P C S S S S abcr S S S S a b c+--==++-+-. 旁切球的球心是其相切侧面与另三个延展切面所成二面角平分面(其中只须其棱不共顶点的三个二面角的平分面即可)的公共点. 证明思路只推证A r ,其余类似推证.作外切于侧面PBC 的旁切球的外切三棱台B C P BCP '''-,得新四面体AB C P ''',如图23-2.图23-2A'由()22C A B P AB C P A S S S S aS S S S a r ====''''+及()()()3313123A B C P ABCD AB C P A A A B C P r S S S S V a V a r r S S S S '''''''+++=='++++. 并注意到性质6、性质17,即可推证A r 的关系式. 推论1r 最小,P r 最大,且11112A B C P r r r r r+++=或 2A B C PA B C A B P A C P B C P r r r r r r r r r r r r r r r r r⋅⋅⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅=推论2()32P V abc r r a b c a b c ⋅==++++或1111P A B C r r S S S =++⋅.推论3记()1122A B C P S S S S S S '==+++,则()()()()2222233333A AB BC C P P V S r S S r S S r S S r S S r '''''==-⋅=-⋅=-⋅=-⋅.推论4记四顶点到所对面的距离为A h 、B h 、C h 、P h ,则11111A B C P h h h h r +++=;11111A B C P Ph h h h r ++-=. (*)还有类似(*)式的三式.此略. 推论5令l 为四面体六条棱长之和,()12A B C P S S S S S '=+++,则)2l ≤;2S ';(39V r +≥;32V . 性质19设am S 、bm S 、cm S 是分别过棱PA 及BC 的中点,过棱PB 及AC 的中点,过棱PC 及AB 的中点的截面面积,则am Sbm Scm S ,且222212am bm cm PS S S S ++=. 性质20设maS '、mb S ',mc S '是分别过棱BC 及PA 的中点,过棱AC 及PB 的中点,过棱AB 及PC 的中点的截面面积,则maS '=mb S '=mc S '222232ma mb mc P S S S S '''++=. 性质21设ad S 、bd S 、cd S 分别为过棱PA 与BC 垂直、过棱PB 与AC 垂直、过棱PC 与AB 垂直的截面面积,则/ad B C S S S =⋅bd A C S S S =⋅,cd A B S S S =⋅ 2222221111112ad bd cd AB C S S S S S S ⎛⎫++=++ ⎪⎝⎭. 性质22设at S 、bt S 、ct S 分别为过棱PA 及BPC ∠的平分线,过棱PB 及APC ∠的平分线,过棱PC 与APB ∠的平分线的截面面积,则B C at B C S S S S ⋅=+,A C bt A C S S S S ⋅=+,A Bct A BS S S S ⋅=+,且111111a t b t c t AB CS S S SSS⎫++=++⎪⎭. 性质23在直角四面体中,(1)斜面上任一点与直角顶点的连线和三条直角棱所成角的余弦的平方和等于1; (2)斜面上任一点与直角顶点的连线和三个直角面所成的角的余弦的平方和等于2; (3)斜面上每一条棱与三条直角棱所成角的余弦的平方和等于1; (4)斜面上每一条棱与三个直角面所成的角的余弦的平方和等于2; (5)三条直角棱与斜面所成角的余弦的平方和等于2;(6)三条直角棱的平方的倒数和等于直角顶点到斜面的距离的平方的倒数. 性质24直角四面体的外接平行六面体,(1)当四面体的六条棱均成为平行六面体的侧面对角线时,平行六面体是菱形六面体; (2)当四面体的直三面角的三条棱成为平行六面体的棱,其余三条棱成为平行六面体的侧面对角线时,平行六面体是长方体. 3.直棱四面体三条相连棱形成三边直角折线(即空间直角四边形)的四面体,称为直棱四面体. 显然,直棱四面体每个面都是直角三角形,若令1ADC β∠=,2ADB β∠=,3BDC β∠=, 则(1)123cos cos cos βββ⋅=; (2)321sin sin sin sin sin CD AD βββθθ==; (3)3sin cos sin ADCDθβθ=; (4)1tan tan sec AD CD θθβ⋅=.直角四面体和直棱四面体,都可以看作从长方体上截下的一部分,在部分多面体过程中,在棱、锥、台的计算中,它们经常出现.由于它有多方面的垂直关系和比较多的等量关系,有人称之为基本四面体.它们可以看作直角三角形在空间的自然推广,是工具性的四面体. 4.等腰四面体从某一顶点出发的三条棱(称为腰)相等的四面体称为等腰四面体,这一顶点称为腰顶点. 性质1等腰四面体的腰顶点在所对的面的射影为该面的外心.反之亦然. 性质2等腰四面体的腰顶点出发的三条棱与该点所对的面成等角.反之亦然. 性质3等腰四面体的底面为正三角形时,则该四面体为垂心四面体.性质4等腰四面体的底面为正三角形,且其边长为腰的压时,则该四面体是等腰直角四面体. 5.拟腰四面体两组对棱分别相等的四面体称为拟腰四面体.性质1两对对棱分别相等的四面体的充要条件是它的棱均成为侧面对角线的外接平行六面体为直平行六面体.证明设四面体ABCD 的外接平行六面体为1111ACB D AC BD -,AD BC =,AC BD =⇔侧面11A DD A 与侧面11CB BC 为全等矩形,侧面11A CC A 与侧面11DB BD 为全等矩形1111ACB D AC BD -为直平行六面体. 推论1两对对棱分别相等的四面体的充要条件是另一对对棱中点的连接线段垂直于此二棱.推论2两对对棱分别相等的四面体的充要条件是这两对对棱中点的连接线段均与第三对对棱中点的连接线段垂直.推论3两对对棱分别相等的四面体的充要条件是四面体在平行于这两对对棱中的每一对对棱的每一个平面上的射影为矩形.性质2两对对棱分别相等的四面体的充要条件是两侧面面积相等,且另两侧面面积也相等,或四侧面分成等面积的两组.证明此定理即为:在四面体ABCD 中,AD BC =,ACD BCD AC BD S S =⇔=△△,ABC ABD S S =△△. 必要性(⇒):显然.充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.此时A 、B 到底面11A CB D 的距离1AH 、2BH 相等,作AE CD ⊥于E ,BF CD ⊥于F ,连1H E ,2H F .图23-321则由ACD BCD S S =△△,有A E B F=,从而12AEH BFH ∠∠=,即二面角1A CD A --等于二面角1B CD B --,此时二面角A CD B --的平分面α垂直于底面11A CB D ,也就垂直于面11AC BD ,且面α交AB 于其中点1O .又可证A 、B 两点到此平分面α的距离相等. 设此平分面α交AB 于1O ,则1O 为上底面中心.同理,由ABC ABD S S =△△,有二面角C AB D --的平分面β也垂直于两底面,也交CD 于其中点2O .此时12O O αβ=∩且垂直于两底面,故平行六面体1111ACB D AC BD -为直平面六面体.由性质1即证得了充分性.性质3两对对棱分别相等的四面体的充要条件是另一对对棱每条棱所张的二个面角分别相等.证明此性质即为:在四面体ABCD 中,AD BC =,AC BD CAD CBD =⇔∠=∠,ACB ADB ∠=∠. 必要性(⇒):显然. 充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.由题设CAD CBD ∠=∠,又A 、B 、C 、D 四点共球O ,则ACD △和BCD △所在的平面截球O 的截面圆是等圆.而A 、B 两点到面11A CB D 的距离相等,则过CD 及AB 中点1O 的截面圆必是球O 的大圆.从而1O 、O 及CD 的中点2O 在过CD 的球O 的大圆面内.同理,1O 、O 、2O 也在过棱AB 的球O 的大圆面内.故1O 、O 、2O 三点共线于这两个大圆面的交线上.又1OO AB ⊥,2OO CD ⊥,则111OO A B ⊥,211OO C D ⊥,从而12O O 垂直于平行六面体的两底面11A CB D 、11AC BD ,故知此平行六面体为直平行六面体,由性质1,充分性获证.此性质的充分性也可以这样证:设CAD CBD α∠=∠=,ACB ADB β∠=∠=,令AC a =,AD b =,BC c =,BD d =,CD x =,AB y =.对ADC △和BDC △应用余弦定理可得()()()22222222cos a b x c d y ab cd x bc ad ac bd ab cd α+-+-==⇒-=--.① 同理,得()()()2ad bc y cd ab ac bd ---=.②由①、②可知,若0ab cd -=,则0ad bc a c -=⇒=,b d =.因此论断获证.若0ab cd -≠,则0ad bc -≠,0ac bd -≠,于是由①、②推得()222x y ac bd =-⇒或xy bd ac +=,或0xy ac by +-=.③由托勒密定理及③式,可知A 、B 、C 、D 四点共圆,与题设矛盾.因此充分性获证. 性质4两对对棱分别相等的四面体的充要条件是其外心(外接球球心)在另一对对棱中点的连线上(重心亦在此连线上). 必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =,作四面体ABCD 的外接平行六面体如图23-3.由性质1,即知此平行六面体为直平行六面体,从而上、下底面中心1O 、2O 的连线既是AB 、CD 中点的连线,又是AB 、CD 的公垂线,亦即既是AB 的中垂线,又是CD 的中垂线,因而四面体ABCD 的外心在12O O 上.充分性(⇐):由题设,四面体的外心在一对对棱AB 、CD 的中点1O '、2O '的连线上,则12O O ''是AB 、CD 的中垂线,从而12O O '':垂直于四面体ABCD 的外接平行六面体1111ACB D AC BD -的两底面,故此外接平行六面体是直平行六面体.由性质1,充分性获证. 性质5两对对棱分别相等的四面体的充要条件是其内心(内切球球心)在另一对对棱中点的连线上(重心亦在此连线上). 证明必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =.作四面体ABCD 的外接平行六面体如图23-3,则此平行六面体为直平行六面体,故11A DC B CD S S =△△.又AD C BD C S S =△△,则二面角1A DC A --等于二面角1B DC B --.而上、下底面中心1O 、2O 所在直线与DC 两相交线所在对角面垂直于两底面,即知此对角面平分二面角A DC B --.同理,12O O 与AB 所在对角面也平分二面角C ABD --.故四面体内心I 在12O O 上.充分性(⇐):设四面体ABCD 的内心I 在12O O 上,则1O 到面ACD 、BCD 的距离相等,从而A 到面BCD 的距离与B 到面ACD 的距离相等(都等于点1O 到这两个面的距离的两倍).由13V Sh =得BCD ACD S S =△△.同理ABD ABC S S =△△.由性质2即证.性质6四面体有两对对棱相等的充要条件是,以这两对对棱为棱的二面角,分别相等.证明在四面体ABCD 中,AD BC =,AC BD =的充要条件是二面角B AD C --等于二面角D BC A --,二面角B AC D --等于二面角A BD C --.必要性(⇒):设AD θ、BC θ分别表示二面角B AD C --、二面角D BC A --的平面角的大小,由AD BC =、AC BD =,有DAC DBC △≌△,ABC BAD △≌△,如图23-4.图23-4H GI DABCEFMN于是DAC DBC ∠=∠,BAC ABD ∠=∠,BAD ABC ∠∠=.由三面角余弦公式(如cos cos cos cos sin sin AD BAC BAD DACBAD DACθ∠-∠⋅∠=∠⋅∠)或三面角全等定理,有AD BC θθ=,即二面角B AD C --等于二面角D BC A --.同理,可证二面角B AC D --等于二面角A BD C --. 充分性(⇐):记I 为四面体ABCD 的内心,从I 向各侧面引垂线,垂足为E 、F 、G 、H ,如图23-4,设过IE 、IF 的平面交AC 于M ,过IG 、IH 的平面交BD 于N ,则EMF ∠,GNH ∠分别为二面角B AC D --、二面角A BD C --的平面角,由题设有EMF GNH ∠=∠. 在Rt IMF △和Rt ING △中,IF IG =,1122IMF EMF GNH ING ∠=∠=∠=∠,从而IM IN =.故I 在对棱AC 、BD 的公垂线段的中垂面α内.同理,I 又在对棱AD 、BC 的公垂线段的中垂面β内,故I 在α与β的交线上.作四面体ABCD 的外接平行六面体如图23-3,知α与β的交线就是平行六面体上、下底面中心1O 、2O 的连线.由性质5即证得充分性.性质7两对对棱分别相等,则四面体的内切球切侧面于第三对对棱的中垂线上. 证明此性质即为:在四面体ABCD 中,若AD BC =,AC BD =,则四面体ABCD 的内切球I 切ACD △、BCD △于CD 的中垂线上,切ACB △、ADB △于AB 的中垂线上.如图23-5,由性质6的充分性证明中可推知12O M O N =,①其中1O 、2O 为球I 切侧面ACD △、BCD △的切点,M 、N 为I 在棱AC 、BD 上的射影.图23-5O 1O 2DABCEFMNI设过1IO 、2IO 的平面交CD 于E ,连1O E 、2O E ,则由球的切线长定理,知12O E O E =.②又由ACD BDC △≌△有MCE NDE ∠∠=,而1O E CD ⊥,2O E CD ⊥,则M 、C 、E 、1O 共圆,E 、D 、N 、2O 共圆.故12MOE EO N ∠=∠.③由①、②、③知ME EN =,从而12sin sin ME ENO C O D MCE EDN===∠∠,∴12Rt Rt CO E DO E CE ED ⇒=△≌△. 故1O E ,2O E 均是CD 的中垂线段.同理,球I 切侧面ACB △,ADB △于AB 的中垂线上. 6.等面四面体我们称三组对棱分别相等的四面体为等面四面体.为了讨论问题的方便,先引进一些记号:等腰四面体ABCD 中,设BC AD a ==,AC BD b -=,AB CD c ==;设()12p a b c =++,()222212k a b c =++;以BC 、BD 、CD 为棱的两侧面所成二面角的大小依次为α、β、γ;四面体的体积记为V ,其内切、外接球半径分别记为r 、R ;顶点x 所对的面的面积记为x S ;外切于顶点x 所对的面,且与其余侧面的延展面相切的旁切球的半径记为x r . 性质1等面四面体对棱所成角的余弦值可表示为()222cos ,b c a a a -=,()222,cos b c a b b -=,()222cos ,a b c c c -=.性质2等面四面体中,对棱中点的连线共点(此点为四面体的重心),且互相平分;连结对棱中点的每一线段均垂直于此二棱,或者说,当四面体绕这样的线段旋转180︒则与本身重合;连结对棱中点的三线段彼此互相垂直.且后两个结论的逆命题也是成立的.推论四面体为等面四面体的充要条件是三对对棱的公垂线两两相互垂直.性质3设a d 、b d 、c d 分别为等面四面体对棱中点连线的长,则a d =,b d =,c d =性质4四面体为等面四面体的充要条件是四面体各面为全等的三角形. 性质5等面四面体所有的面角均为锐角,或者说各侧面是锐角三角形.(见本章练习题A 第7题) 性质6四面体为等面四面体的充要条件是过四面体的每一顶点的三条棱长的m (m ∈R 且0m ≠)次方之和相等.分析只证充分性:令BC a =,AC b =,AB c =,AD x =,BD y =,CD z =,由m m m m m m m m m m m m b c x c a y a b z x y z ++=++=++=++,即推得a x =,b y =,c z =.推论四面体为等面四面体的充要条件是四面体的每一顶点的三条棱长之和相等.性质7四面体为等面四面体的充要条件是四面体各侧面三角形边长的m (m 为非零实数)次方之和相等.推论四面体为等面四面体的充要条件是四面体各侧面三角形的周长相等.性质8四面体为等面四面体的充要条件是四面体各侧面三角形的三条中线长的平方和相等. 性质9四面体为等面四面体的充要条件是四面体每一顶点处的三个面角之和为180︒.性质10四面体为等面四面体的充要条件是过每对对棱的二面角相等(即三对二面角分别相等).性质11cos cos cos 1αβγ++=.性质1222sin sin sin 3x S a b cVαβγ===(其中x 可表示A 、B 、C 、D ,后面亦同). 性质13()()()22222222222224cos cos cos 222xa k ab k bc k c S αβγ---===. 性质14在等面四面体ABCD 中,A B C D S S S S ==== 性质15四面体为等面四面体的充分必要条件是各面的面积相等.分析四面体的各二面角的大小分别用α、β、γ、α'、β'、γ'表示,如图23-6.图23-6β'γ'α'γβαDOAB由cos cos cos D C B A S S S S αβγ⋅+⋅+⋅=及D C B A S S S S ===有cos cos cos 1αβγ++=.同理,有cos cos cos 1γβα''++=,cos cos cos 1αβγ''++=,cos cos cos 1βαγ''++=. 由上推出,cos cos αα'=,cos cos ββ'=,cos cos γγ'=,而0α<,β,γ,α',β',γ'<π,所以αα'=,ββ'=,γγ'=,由此即证. 性质16等面四面体的体积V =()222212k a b c =++. 分析作四面体ABCD 的外接平行六面体,使四面体的棱成为平行六面体的侧面对角线,如图23-7.由四面体对棱相等,可证得平行六面体侧面均为矩形,即为长方体,于是列方程组求得长方体共顶点的图23-7DABC性质17记等面四面体共顶点的三个面角分别为1θ、2θ、3θ,则V =分析如图23-8,设1B D Cθ∠=,2ADC θ∠=,3ADB θ∠=.又设A 点在面BCD 内的射影为E ,作A H C D⊥于H ,连EH ,则AHE γ∠=.由12B S CD AH =⋅,有2B AH S c =⋅,则2sin sin B AE AH S cγγ=⋅=⋅⋅.图23-8γabc D ABCEH注意到31212cos cos cos cos sin sin θθθγθθ-⋅=⋅,有1233A A B V S AE S S c=⋅=⋅123θθθ++=π及()222123123121cos cos cos 2cos cos cos cos θθθθθθθθ---+⋅⋅=-+()()()212312123cos cos cos cos cos θθθθθθθθ⋅--+++-⋅=⎡⎤⎣⎦1234cos cos cos θθθ⋅⋅,11sin 2A S bc θ=⋅,21sin 2B S ac θ=⋅,由此即证.性质18等面四面体的体积为 222222sin sin sin 333x x x V S S S c b a γβα=⋅=⋅=⋅;或43x V S r =⋅. 性质1912R k ==. 性质20r =性质21四面体为等面四面体的充要条件是四面体的外心(外接球球心)与重心重合(见本章例13证明部分).或者,四面体各顶点和外心的连线与对面的交点为该面的重心.性质22四面体为等面四面体的充要条件是四面体的外心与内心(内切球球心)重合.(见本章例12) 性质23四面体为等面四面体的充要条件是四面体的内心与重心重合.或者,各顶点和内心的连线与对面的交点为该面的重心.推论若四面体的外心、内心、重心中任意两个相重合,则第三个也必和它们重合. 性质24在等面四面体中,2A B C D r r r r r =====.(提示:设顶点x 到所对面的距离为x h ,则可证2x x x h rr h r⋅=-,由此即推得)性质25四面体为等面四面体的充要条件是四面体的四条高长之和等于内切球半径的16倍(即16A B C D h h h h r +++=).分析充分性:由以3x x Vh S =及16A B C D h h h h r +++=有1111316A B C D V r S S S S ⎛⎫⋅+++= ⎪⎝⎭.注意到()13A B C D V S S S S r =+++⋅, 则()111116A B C D AB C D S S S S S S S S ⎛⎫++++++= ⎪⎝⎭. 而()111116A B C D AB C D S S S S S S S S ⎛⎫++++++ ⎪⎝⎭≥,取等号是当且仅当A B C D S S S S ===.由此即证. 推论42x x h r r ==.注对外接球半径也有一条性质见本章例13.性质26四面体为等面四面体的充要条件是它的切点四面体(内切球切侧面的切点)为等腰四面体. 分析充分性:设O 为四面体ABCD 的内心,亦即它是切点四面体A B C D ''''的外心.当A B C D ''''为等腰四面体时,由性质2的推论推之.性质27四面体为等面四面体的充要条件是四面体的内切球与各侧面的切点为该面的外接圆圆心. 性质28四面体为等面四面体的充要条件是四面体的重心(或外心)在各侧面内的射影为该面的外接圆圆心.性质29四面体为等面四面体的充要条件是各侧面都具有相等外接圆半径的锐角三角形. 性质30四面体为等面四面体的充要条件是四面体各侧面外接圆半径与内切圆半径之积相等. 分析充分性:在四面体ABCD 中,设BC a =,AC b =,AB c =,1DA a =,1DB b =,1DC c =,R ',r '分别为侧面三角形外接、内切圆半径,则2abcR r a b c''=++.同理,1111111111112ab c a bc a b cR r a b c a b c a b c''===++++++.由此得()()()()11110c a c b b b b a c c +-++-=, ()()()()11110c c b a a a b a c c +-++-=, ()()()()11110b b c a a a a c b b +-++-=.将上述三式看作1a a -,1b b -,1c c -为未知数的三元一次方程组,它只有唯一的一个零解.即证. 性质31四面体为等面四面体的充要条件是四面体的四条中线长相等(中线长即为四面体的每一顶点和对面重心的连结线段长).分析充分性:注意到中线长相等及四面体重心性质,推得重心与外心重合. 性质32性质33四面体为等面四面体的充要条件是四面体的四条中线长的平方和等于2649R . 分析由性质31及25推导.性质34四面体为等面四面体的充要条件是四面体的四条高线长相等(即A B C D h h h h ===).性质35等面四面体的过某棱及所对棱中点的截面,就是过此棱及与所对棱垂直的截面,也就是过此棱且平分此棱所在二面角的截面.性质36在等面四面体ABCD 中,设分别过棱BC 、BD 、CD 且平分α、β、γ的截面面积为a S 、S β、S γ,则cos2x S S αα=⋅,cos2x S S ββ=⋅,cos 2x S S γγ=⋅,且22222x S S S S αβγ++=.性质37四面体为等面四面体的充要条件是其棱均作为外接平行六面体的侧面对角线时,平行六面体为长方体.性质38四面体为等面四面体的充要条件是四面体在平行于两对棱的每一个平画上的射影为矩形. 性质39四面体为等面四面体的充要条件是四面体的展开图是一个引出了三条中位线的锐角三角形. 性质40四面体为等面四面体的充要条件是四面体内任意一点到各侧面的距离之和为定值.分析充分性:设定值为l ,取点为内心时有4l r =,再取点为重心时有4A B C D h h h h l +++=,再由性质25即证. 7.正四面体称六条棱相等的四面体为正四面体.性质1正四面体的每个面是正三角形.反之亦然. 性质2正四面体是三组对棱都垂直的等面四面体. 推论正四面体是两组对棱垂直的等面四面体.性质3倍,反之亦真. 性质4正四面体的各棱的中点是正八面体的六顶点. 性质5正四面体的每个三面角均是面角为60︒的三面角,因而都是全等的三面角,且每个三面角的特征,即()2S x ==.性质6正四面体的六个二面角都相等.若记其大小为θ,则1arccos 3θ=或.其逆命题亦成立.性质712倍,即2S 全=,3V =. 推论设S △为侧面三角形面积,则4228cos 2a S θ=⋅⋅△;22sin 3S a V θ=⋅⋅△;V S ⋅全.性质8正四面体的内切球与其外接球是同心球,内切球半径r =(等于高线的14);外接球半径R =;两球面面积之比为1∶9. 性质9在各类四面体的比值R r ∶中,以正四面体的比值3R r =∶为最小. 性质10正四面体的体积与其内切球的内接正四面体的体积之比为27.且若内切球半径为r ,则其体积为3.性质11正四面体的四个旁切球半径均相等,等于内切球半径的2倍,即x r =,或等于正四面体高线的一半.性质12正四面体的内切球与各侧面的切点是侧面三角形的外心,或内心,或垂心,或重心.除外心外,其逆命题均成立.性质13正四面体的外接球球心到四面体四顶点的距离之和,小于空间中其他任一点到四顶点的距离之和.分析利用正四面体的外接球球心O 是过四面体的一棱AB 与对棱CD 中点N 的平面(共有六个这样的平面)的交点的特性,我们将指出,如果点P (空间中任一点)不在这些平面之一上即如果它不是O ,则和S PA PB PC PD =+++不是最小.由此得出结论:使S 最小的点位于所有这些平面上,因此最小值只可能在点O 达到.假定P 不在平面ABN 上,设l 为过P 平行于CD 的直线,因此垂直于平面ABN ,且设P '为l 和ABN 的交点,则PC PD P C P D ''+>+.①事实上,CPD △和CP D '△有相同的底和高,但后者是等腰三角形,它有较小的周长.又PA P A '>,PB P B '>.② 因为PA 是Rt APP '△的斜边,PB 是Rt BPP '△的斜边,把①和②中三个不等式加起来,得PA PB PC PD P A P B P C P D ''''+++>+++,这就是我们要证的.性质14四面体为正四面体的充要条件是,存在五个球与四面体的六条棱或其延长线相切. 此性质的充分性证明见本章例14.性质15正四面体内任意一点到各侧面的垂线长的和等于这四面体的高.性质16对于四个相异的平行平面,总存在一个正四面体,其顶点分别在这四个平面上.性质17以正四面体的每条棱为直径作球,设S 是所作六个球的交集,则S 中含有两点,它们的距离为性质18 性质19四面体为正四面体的充要条件是,其棱均作为外接平行六面体的侧面对角线时,平行六面体为正方体.性质20四面体为正四面体的充要条件是,其共顶点三棱作为外接平行六面体的棱时,平行六面体为一个三面角面角均为60︒的菱形六面体.性质21囚面体为正四面体的充要条件是,四面体在平行于两棱的每一个平面上的射影是正方形. 性质22四面体为正四面体的充要条件是,四面体的展开图是一个引出了三条中位线的正三角形. 性质23正四面体每条高的中点与底面三角形三顶点均构成直角四面体的四顶点,且高的中点为直三面角顶点.性质24正四面体是垂心四面体(四条高共点的四面体),且四面体的垂心、重心、内心、外心这四心合一.性质25设P 为正四面体1234A A A A 的外接球面上任一点,R 为该球的半径. (I )42218i i PA R ==∑;(Ⅱ)若1B ,2B ,…,6B 分别为23A A ,34A A ,24A A ,12A A ,13A A ,14A A 的中点,则42218i i PB R ==∑;(Ⅲ)若i O 为i A 所对面的中心(1,2,3,4i =),则22409i PO R =∑. 证明(I )设i O 为正四面体1234A A A A 的中心,则。
四面体与平行六面体一、一般四面体的性质性质1.任意四面体六个二面角的平分面交于一点,这点到四面体四个面的距离相等,称该点为四面体内切球球心(简称四面体的内心)。
内切球与四面体四个面内切。
若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似的有,,B C D S S S ,则内切球半径3A B C DVr S S S S =+++.性质2.任意四面体六条棱的垂直平分面交于一点,这点到四面体顶点的距离相等,该点称为四面体外接球球心(简称四面体外心)。
外接球通过四面体四顶点。
性质3.任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且该点是中线的四等分点。
性质4.四面体体积公式一:11113333A A B B C C D D V S h S h S h S h ==== 性质5.四面体体积公式之二:1||||sin ,6V AB CD d AB CD =⋅⋅⋅<> (其中d 为AB 、CD 距离)性质6.四面体体积公式二:2sin 2sin 2sin 2sin 2sin 2sin 333333C D AB A D BC A B CD B C DA B D AC A C BDS S S S S S S S S S S S V AB BC CD DA AC BDθθθθθθ======二、特殊四面体的性质(1) 正四面体:各边均相等;(2) (3) 等腰四面体:三组对边分别相等。
三、平行面体像平行四边形是平面图几何的基础一样, 平行六面体是立体几何的基本图形。
性质1.平行六面体的四条体对角线交于一点,且在这一点互相平分,称该点为平行六面体的中心; 性质2.平行六面体的所有体对角线的平方和等于所有棱的平方和。
推论1:平行六面体的所有侧面对角线的平方和等于其所有体对角线平方和的两倍。
推论2:平行六面体的每一侧棱的平方和等于等于与这一侧共面的两侧面四条对角线的平方减去与这一侧棱不共面而共端点的两条侧面对角线平方和所得差的14。
1四面体的性质不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面.研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力。
性质1:四面体中相对的棱所在的直线是异面直线。
如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线。
性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直.证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心。
AH BCD ⊥平面。
连结BH ,CH ,DH,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥.性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直。
证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心。
由性质2知AD BC ⊥.根据性质2,3立即可以得到:性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心。
利用全等三角形的判定和性质,可以证明下面两条性质:性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等。
反之也真。
特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点。
性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等.性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形。
短论荟苹◆?歆吁(2008年第6期高中版)45立体几何中的活跃分子——直角四面俸438400红安县大赵家高中曾永三条侧棱两两相互垂直的四面体是一种特殊的四面体,我们称之为直角四面体,它具有以下性质:(1)任何一条侧棱垂直另两个侧棱构成的平面;(2)三个侧面两两垂直;(3)顶点在底面上的射影是底面三角形的垂心等,立体几何中很重要的概念秘定理,都能从这个直角四正面体中衍生,因此深入研究直角四面体,对于把握空间图形中直线和平面的关系。
尤为重要.下面利用直角四面体的性质简解两道商考题.1直角四面体呈显性情形此时直角四面体作为试题图形的二个重要部分,它常与三垂线定理发生直接联系,这正是立体几何的核心内容之一.,么∑(2)征直角四咖俸卜灿甲,知点C衽坻回吼曰上的射影D点是△谢口的垂心,落在旧之上.A c=召c=口1.。
石㈣日0PcD=争,A C上曰C J z令嬲与底面嘞所成的角为毡(o≤a<詈),所以乒8i n胁si舱,即争劬=sil l a,‘.㈣<手,..o<乒砌<芋..o<姗<辱,且o≤a<詈,...o<a<子46十。
?般-7(2008年第6期高中版)短论荟萃一嬲中,M 在底面c D E 的射/^\\影。
是△cD E 的垂心,连结/“\..刃ccD 延长交朋于,,连胛,/.乒t 。
y /鼬M FLD E .厶FC M 是M CD ::\l j /6\?与平面cD E 所成的角..‘罾墨搴醒即得^循2+J |I 伪2=//∥,所以船上旭正阡~…....几由(1)知膨c 上脚,I \../一一’们上彻。
—\∑Z /。
一个俄罗斯高考题的特殊解法310002杭州师范大初教院戎松魁310003杭州市普通教育研究室李学军下题是2006年莫斯科大学数学力学系入学考试数学试卷的一个压轴题:设毒和y 是任意实数,求表达式12茹一,,一1I +I 善+,,I +I ,,I 的最/J 、值.分析此题看视简单,但要求正确答案却不容易.在俄罗斯《中学数学》杂志2007年第一期上给出了此题的一种解法,该解法巧妙地利用了数形结合的数学思想,简洁地求得了最小值,解题过程中应用了这样一个事实:在数轴上有三个点,它们的坐标分别为y ,<儿<乃,如果要在数轴上再找一个点(设坐标为y),使这点与前三点的距离之和为最小,那么此点的作标应为托,即,,=y2时,I ,,一yl I +1),一y2I +I ,,一儿I 有最小值,且最小值为乃一,,..解在石不变的情况下,将此表达式变形:12茗一互一lI +I 善+,,I +l ,,I =l y 一(2善一1)I +l ,,一(一善)I+I ,,一0I ,设扎是2茗一l ,一茗,0这三个中的最大的一个,y 。
直角四面体的一个性质
代孔亮
【期刊名称】《中学数学月刊》
【年(卷),期】1996(000)004
【摘要】对应于平面几何中的三角形,立体几何中最简单而又重要的图形是四面体。
如果一个四面体有一个直三面角,我们称它为直角四面体,直三面角的顶点称为直角
四面体的直角顶点。
直角四面体作为特殊的四面体,我们常把它与特殊的三角形——直角三角形进行类比。
我们知道,对于直角三角形,它有外接圆,其圆心在斜边的
中点,半径是斜边的一半。
那么,对于直角四面体,它是否存在外接球,若存在,球心在
何处,半径是多少?下面的命题回答了这个问题。
【总页数】1页(P21-21)
【作者】代孔亮
【作者单位】长沙市九中!410002
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.直角四面体的性质分类与解析 [J], 金兔
2.直角四面体的若干性质 [J], 曾金兰
3.再探直角四面体的性质 [J], 陈平平
4.直角四面体一个性质的应用 [J], 陈天雄
5.例谈直角四面体性质的探究和证明 [J], 李小蛟;杨世卿;张强
因版权原因,仅展示原文概要,查看原文内容请购买。
高中数学《从三角形到四面体”(高三)》教学课例分析一.教学设计本课是一节全国中小学数学“情境—问题”教学研讨会的观摩课.数学“情境—问题”教学是贵州师大吕传汉、汪秉彝两位教授倡导的一种基本课堂教学形式,其宗旨在于培养创新意识和创新能力,其基本形式为:(观察、分析)(猜想、探究)(求解、反驳)(学做、学用)本节课以两个高考题(见后)导入,把学生熟悉的三角形和四面体作为情境, 在两个示例(“线段的垂直平分面”、“二面角的角平分面”)的基础上,让学生参与提出问题,分析问题,解决问题的过程. 从而复习空间点、线、面的位置关系,线共点、面共点的证明方法,类比方法,培养学生空间想象能力,类比推理能力,逻辑推理能力,创新思维能力.这种教学形式重在让学生参与, 关键在于情境的设置与引导, 本节课设置的情境很开放, 有利于学生提出问题, 从平面到空间的跨度较大, 这是对空间想象力的一个挑战, 对于空间想象力较差的学生, 提出一个有关四面体的问题都是困难的. 所以, 采用学生提出一个问题就解决一个问题的方式, 而不是先让学生提完问题再选择问题解答, 这样, 先提的问题对其他学生有启发, 有利于学生提出更多的问题.在本节课的情境下能提出的问题较多、较难, 备课时花了很多时间, 查了很多资料, 准备了几个“心”的证明;同时应用几何画板课件来帮助学生思考和解决问题.二.课堂教学过程1.引入(屏幕显示,请学生回答)(1)(03年全国文15)在平面几何里,有勾股定理:“设三角形的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积的关系,可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ABD两两互相垂直,则 .”(2)(04年北京理 14)定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和. 已知数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为,这个数列的前n项和S n的计算公式为 .2.类比的意义(屏幕展示)在学习过程中,我们常常会有“似曾相识”的感觉,而且在不同领域中常会感到某种类似的成份.如果把这些类似的成份进行比较、联想的话,可能出现许多意想不到的结果和方法.这种把类似的事物进行比较、联想,由一个数学对象已知特殊性质迁移到另一个数学对象上去,从而获得另一个对象的性质的方法就是类比法.类比法不仅是一种以特殊到特殊的推理方法,也是一种寻求解题思路,猜测问题答案或结论的发现方法.法国数学家兼天文学家拉普拉斯说:“即使在数学里,发现真理的主要工具也是归纳和类比.”比拉普拉斯早两个世纪的德国天文学家和数学家开普勒对类比方法更是情有独钟,推崇备至,他说:“我珍视类比胜于任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密,在几何中它应该是最不可忽视的.”可以看出:类比是发明创造的重要源泉.师:其实在学习过程中我们常常不自觉的运用类比方法,希望大家今后能主动地去认识和运用类比方法。
立体几何经典定理概述(八大定理)立体几何经典定理概述(八大定理)本文将概述立体几何中的八大经典定理。
立体几何是研究三维空间中的图形和形体的数学学科,定理是在研究过程中得出的具有重要意义的数学命题。
1. 欧拉定理欧拉定理是立体几何中最著名的定理之一。
它规定了三维物体的面、顶点和边的关系。
具体来说,如果一个多面体满足面+顶点-边=2的关系,那么它就是一个封闭的多面体。
欧拉定理形象地描述了三维世界中多面体的特性。
2. 柯西定理柯西定理是关于立体几何中平行四边形的定理。
它指出,对于一个平行四边形,其对角线互相平分彼此。
这个定理在解决平行四边形的性质和关系时非常有用,能够帮助我们更好地理解平面几何的性质。
3. 形心定理形心定理是关于多边形形心的定理。
形心是多边形中所有顶点的连线的交点,该定理指出,任意多边形的形心一定在多边形的重心和质心连线的上面。
形心定理可以帮助我们确定多边形的形心位置,从而研究多边形的性质和变形。
4. 二等分线定理二等分线定理是关于立体几何中等分线的定理。
它规定了等分线在多面体中的特性,即等分线和相应的两个面以及它们的交点构成的平面垂直。
这个定理在解决多面体的等分线问题时非常有用,能够帮助我们进一步理解多面体的性质。
5. 范恩艾克线定理范恩艾克线定理是关于球面上切线和交角的定理。
它指出,在球面上,任意切线与相应交角的正弦值等于球心到交点的距离和切线长的比值。
这个定理在解决球面上的切线和交角问题时非常有用,能够帮助我们研究球面的性质和切线关系。
6. 斯坦纳定理斯坦纳定理是关于三维空间中图的生成树的定理。
生成树是一个无圈连通图的子图,其中包含了所有顶点并且边的数量最少。
斯坦纳定理指出,在三维空间中的图中,生成树的条数等于顶点数减去连通分量的数量。
这个定理在解决三维空间图的生成树问题时非常有用。
7. 勾股定理勾股定理是立体几何中最基础的定理之一。
它规定了直角三角形边长之间的关系,即直角三角形的两个直角边的平方和等于斜边的平方。
直角四面体的性质的证明有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 直角四面体有下列性质:如图,在直角四面体 AOCB 中,∠ AOB=∠ BOC=∠ COA=90°,OA=a ,OB=b,OC=c .则①不含直角的底面ABC 是锐角三角形;A②直角顶点 O 在底面上的射影 H 是△ ABC 的垂心;③体积V=1a b c ; H6④底面面积 S △ ABC =1Oa 2b 2 b 2c 2 c 2 a 2 ;C2D⑤2△BOC△ABC ;B△BHCS=S·S222 2⑥S+S+S=S △ABC△BOC△AOB△AOC⑦1 111;OH 2a 2b 2c 21 a 2⑧外接球半径R= b 2 c 2 ;2⑨内切球半径r=SAOBSBOCb SAOCSABCa c由正四面体的性质,运用联想类比的思想方法来探求直角四面体的性质。
所谓直角四面体就是有一个三面角的各个面角都是直角的四面体。
如图,四面体 OABC 在点 O 处的三个面角都是直角。
所以四面体 OABC 是直角四面体。
直角四面体的性质:① 直角四面体的对棱互相垂直 .证明:如图OB⊥ OC,OB⊥ OA。
OB⊥ 平面OAC,又,同理可得 :直角四面体的对棱互相垂直.②二面角 A-OB-C 、二面角A-OC-B 、二面角 B-OA-C都是直二面角.证明:由( 1 )得 OB⊥ 平面OAC,∠A OC 是二面角 A-OB-C 的平面角,即二面角 A-OB-C 是直二面角。
同理可得 :OC ⊥平面 OAB ,二面角 A-OC-B 是直二面角,OD⊥ 平面OBC,二面角B-OA-C是直二面角。
③直角顶点O 在底面上的射影H 是△ ABC 的垂心 .证明:连结,并延长交于,连结由三垂线定理的逆定理得同理,④S2△BOC =S △BHC· S△ABC证明:⑤.证明:即同理,在⑥不含直角的底面ABC 是锐角三角形 .证明:设 OA = a,OB = b,OC = c,则,,,在中,由余弦定理得,所以∠ BAC 是锐角 . 同理可得∠ ABC 、∠ ACB 是锐角,所以△ABC 是锐角三角形 .⑦ S2△BOC +S 2△△AOB +S 2△AOC =S 2△ABC(底面面积S△ABC =)证明:由( 6 )得:⑧体积V=.证明:⑨外接球半径R=.如图所示,以点O 为长方体的一个顶点,OA、 OB 、OC 为长方体的三棱作长方体OBEC-AFGH ,则四面体 OABC 的外接球也是长方体OBEC-AFGH的外接球.设四面体OABC的外接球半径是R,则.⑩内切球半径r=设△ OAB 的面积是 S 1,△ OAC 的面积是S2,△ OBC 的面积是S3,△ ABC 的面积是 S 4,则,,,由⑦得:.由等体积原理得:所以 ,内切球半径r=。
[接上] 第十讲:特殊四面体及其性质[直角四面体的应用]例1. 求证判定 (3) 中O —ABC 是直角四面体。
证法一:设正四面体ABCD 的棱长为a ,则其高DH=3,而AH=3a ,DO=OH=6a ,在Rt AHO ∆中⇒212OA =a 2,同理OB=OC=OA=2a,由勾股定理易证∠AOB=∠BOC=∠COA=90,故得证。
证法二:如图三,将正四面体ABCD 镶嵌在棱长为a 的正方体中,则正四面体ABCD 中O 、H 是正方体对角线DE 的两个三等分点[3],由定比分点公式得:O(2,,333a a a )、H(22,,333a a a )⇒AO OB ⋅=(22,,333a a a -)⋅(22,,333a a a )=0,即OA ⊥OB ,同理OB ⊥OC ,OC ⊥OA,得证。
例2. (2003年湖南省高中数学竞赛题) S —ABC 是三条棱两两互相垂直的三棱锥,O为底面ABC内一点,若∠OSA=α,∠OSB=,β∠OSC=γ,则tan α⋅tan β⋅tan γ∈ ( )A . [)+∞ B.(0, C. [1,] D.(1,简析:由2.2 (1) I 有cos2a+cos 2β+cos 2γ=l ⇒sin 2α=1–cos 2α =cos 2β+cos 2γ≥2cos β⋅cos γ,同理有 sin 2β≥2cosacos γ,sin 2γ≥2cos αcos β 三式相乘有tan 2αtan 2βtan2γ≥8 ∴选(A) 或以SO 为对角线补成长、宽、高分别设为a 、b 、c 的长方体 ⇒tan α⋅tan β⋅tan γ≥ abc=例3.三棱锥的三条侧棱两两互相垂直,三侧面与底面所成的二面角分别为30°、45°、60°,底面积为1,则三棱锥的侧面积为 ( )(A). 2123++ (B). 213+ (C). 212+ (D). 26 解:每一个侧面都是底面在这个侧面所在平面上的射影,由面积射影公式cos θ =SS '⇒ S 侧 = S 底·(cos30°+cos45°+cos60°)= 2123++ ∴选 ( A )解后反思:由2.2(1)Ⅲ 知cos 230+cos 245+cos 260=321≠,故此题是一道流行很广的错题! 例4. 已知直线四面体O —ABC 中,三直角面与斜面ABC 所成的二面角分别为α、β、γ,则( )A.cos αcos βcos γ=13B .cos 2α +cos 2β+cos 2γ=l C.sin αsin βsin γ=13 D .sin 2α +sin 2β+sin 2γ=1 解法一:由2.2 (1) Ⅲ 知cos 2α +cos 2β+cos 2γ=l ⇔ sin 2α +sin 2β+sin 2γ=2 . ∴选(B)解法二:由2.4有S 42=21S +22S +23S ,两边同时除以S 42,由cos θ =SS ' 得: cos 2α +cos 2β+cos 2γ=l .解法三:补成长方体,则α、β、γ⇔长方体对角线OH 与OA 、OB 、OC 所成的角,特殊值法,令OA =OB==O C=1,则方向角α=β=γ,且方向余弦cos α=cos β=cos γ(B)对。
直角四面体的性质的证明
有一个三面角的各个面角都是直角的四面体叫做直角四面体. 直角四面体有下列性质:
如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则
①不含直角的底面ABC 是锐角三角形;
②直角顶点O 在底面上的射影H 是△ABC 的垂心;
③体积 V= 16
a b c ; ④底面面积S △ABC
⑤S
2△BOC =S △BHC ·S △ABC ; ⑥S
2△BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 2222
1111OH a b c =++; ⑧外接球半径
⑨内切球半径 r=AOB BOC AOC ABC
S S S S a b c ∆∆∆∆++-++
由正四面体的性质,运用联想类比的思想方法来探求直角四面体的性质。
所谓直角四面体就是有一个三面角的各个面角都是直角的四面体。
如图,四面体OABC 在点O 处的三个面角都是直角。
所以四面体OABC 是直角四面体。
直角四面体的性质:
① 直角四面体的对棱互相垂直.
A B C D O H
证明:如图 OB ⊥OC,OB ⊥OA。
OB ⊥平面OAC,又
,同理可得:
直角四面体的对棱互相垂直.
②二面角A-OB-C、二面角A-OC-B、二面角B-OA-C都是直二面角.证明:由(1)得OB ⊥平面OAC,
∠AOC是二面角A-OB-C的平面角,即二面角A-OB-C是直二面角。
同理可得:OC ⊥平面OAB,二面角A-OC-B是直二面角,
OD ⊥平面OBC,二面角B-OA-C是直二面角。
③直角顶点O在底面上的射影H是△ABC的垂心.
证明:连结,并延长交于,连结
由三垂线定理的逆定理得
同理,
④S2△BOC=S△BHC·S△ABC
证明:
⑤.
证明:
即
同理,在
⑥不含直角的底面ABC是锐角三角形.
证明:设OA = a,OB = b,OC = c,则
,,,
在中,由余弦定理得
,
所以∠BAC是锐角.同理可得∠ABC、∠ACB是锐角,所以△ABC是锐角三角形.
⑦S2△BOC+S2△△AOB+S2△AOC=S2△ABC(底面面积S△ABC=)
证明:由(6)得:
⑧体积V=.
证明:
⑨外接球半径R= .
如图所示,以点O为长方体的一个顶点,OA、OB、OC为长方体的三棱作长方体OBEC-AFGH,则四面体OABC的外接球也是长方体OBEC-AFGH的外接球.设四面体OABC的外接球半径是R,则
.
⑩内切球半径r=
设△OAB的面积是S1,△OAC的面积是S2,△OBC的面积是S3,△ABC的面积是S4,则
,,,
由⑦得: .
由等体积原理得:
所以,内切球半径r=。