行列式的基本性质0
- 格式:ppt
- 大小:1.35 MB
- 文档页数:50
§1.5 行列式的性质行列式是矩阵最为基础的性质之一,它具有众多的特性、定理和性质。
行列式在线性代数、微积分、算法设计、物理、统计学等众多学科中都有着广泛的应用。
了解行列式的性质可以帮助我们更好地掌握矩阵的相关知识,在各个领域更为灵活地应用数学知识。
行列式的性质包括:1. 矩阵中任意两行(列)交换,行列式的值变号,即 $det(A) = - det(A^T)$,其中$A^T$ 表示 $A$ 的转置矩阵。
2. 矩阵中某一行(列)加上另一行(列)的若干倍,行列式的值不变。
3. 矩阵中某一行(列)乘以一个非零常数 $k$,行列式的值乘以 $k$。
5. 对于$n$阶矩阵,行列式可以按任意一行(列)展开,展开后的行列式值等于该行列式中所有元素的代数余子式乘以对应元素的余子式。
6. 若矩阵中有两行(列)的对应元素成比例,则该矩阵的行列式为 $0$。
7. 若矩阵 $A$ 是可逆的,则其行列式值不为 $0$,并且$det(A^{-1})=\dfrac{1}{det(A)}$。
8. 对于矩阵 $A$ 和 $B$,$det(AB)=det(A)det(B)$,其中 $A$ 和 $B$ 的阶数应当相同。
9. 对于 $n$ 级单位矩阵 $I_n$,其行列式的值为 $1$。
这些性质并不是行列式的全部,但是是最基本的性质。
它们在计算行列式的各种方法和技巧中发挥了重要的作用。
掌握这些性质可以使我们更加熟练地应用行列式进行矩阵运算和分析问题。
接下来,我们将对一些常用的性质和定理进行详细的讲解。
对于$n$级方阵$A$,若将它的任意两行交换,则其行列式$det(A)$的值变号。
这意味着行列式具有交换性和反对称性。
对于$n$级矩阵$A$,如将它的第$i$行与第$j$行交换,则有:$$\begin{vmatrix}a_{11} & a_{12} & ... & a_{1n} \\a_{21} & a_{22} & ... & a_{2n} \\... & ... & ... & ... \\a_{i1} & a_{i2} & ... & a_{in} \\... & ... & ... & ... \\a_{j1} & a_{j2} & ... & a_{jn} \\... & ... & ... & ... \\a_{n1} & a_{n2} & ... & a_{nn}\end{vmatrix} = -\begin{vmatrix}a_{11} & a_{12} & ... & a_{1n} \\a_{j1} & a_{j2} & ... & a_{jn} \\... & ... & ... & ... \\a_{i1} & a_{i2} & ... & a_{in} \\... & ... & ... & ... \\a_{i1} & a_{i2} & ... & a_{in} \\... & ... & ... & ... \\a_{n1} & a_{n2} & ... & a_{nn}\end{vmatrix}$$使用这一方法可以将行列式划分成多个简单的子项,方便进行计算。
行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。
在本文中,我们将探讨行列式的性质及其求解方法。
一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。
1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。
- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。
- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。
- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。
- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。
线性代数行列式的计算与性质线性代数行列式的计算与性质行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式概念最早出现在解线性方程组的过程中。
十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。
十八世纪开始,行列式开始作为独立的数学概念被研究。
十九世纪以后,行列式理论进一步得到发展和完善。
矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。
行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。
矩阵A 的行列式有时也记作|A|。
绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。
不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。
此外,矩阵的绝对值是没有定义的。
因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。
例如,一个矩阵:A=????? ??i h g fe d c b a ,行列式也写作,或明确的写作:A=i h gf e dc b a,即把矩阵的方括号以细长的垂直线取代行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。
一、行列式的定义与计算一个n 阶方块矩阵 A 的行列式可直观地定义如下:其中,是集合{ 1, 2, ..., n }上置换的全体,即集合{ 1, 2, ..., n }到自身上的一一映射(双射)的全体;表示对全部元素的求和,即对于每个,在加法算式中出现一次;对于每一对满足的数对,是矩阵 A 的第i 行第j 列的元素。
矩阵与行列式的基本运算与性质矩阵和行列式是线性代数中重要的数学工具,它们在各个领域都有广泛的应用。
本文将探讨矩阵与行列式的基本运算和性质,帮助读者更好地理解和应用这些概念。
一、矩阵的定义与基本运算矩阵是由m行n列元素组成的矩形数组,通常用大写字母表示。
矩阵中的元素可以是实数或复数。
一个m×n的矩阵可以表示为:A = [aij]m×n其中,aij表示第i行第j列的元素。
矩阵的基本运算包括加法、减法和数乘。
对于两个相同维度的矩阵A和B,它们的加法和减法定义如下:A +B = [aij + bij]m×nA -B = [aij - bij]m×n对于一个矩阵A和一个实数k,数乘定义如下:kA = [kaij]m×n二、矩阵的乘法与转置矩阵的乘法是一种比较复杂的运算,需要符合一定的规则。
对于一个m×n的矩阵A和一个n×k的矩阵B,它们的乘积AB定义如下:AB = [cij]m×k其中,cij = a1j*b1i + a2j*b2i + ... + anj*bni。
需要注意的是,矩阵的乘法不满足交换律,即AB不一定等于BA。
矩阵的转置是指将矩阵的行变为列,列变为行。
一个m×n的矩阵A 的转置记为AT,其定义如下:(A^T)ij = Aji转置操作可以改变矩阵的维度,即如果A是一个m×n的矩阵,则AT是一个n×m的矩阵。
三、行列式的定义与性质行列式是一个与矩阵相关的数值。
对于一个n阶方阵A,其行列式记为|A|或det(A),它的定义如下:|A| = a11a22...ann + a12a23...a(n-1)n + ... + (-1)^(n+1)an1a2...a(n-1)行列式有一些基本的性质,包括以下几点:性质1:如果矩阵的某一行或某一列都是0,则其行列式的值为0。
性质2:如果矩阵的两行或两列相等,则其行列式的值为0。
行列式的求解方法行列式是矩阵所具备的的一个重要的数学性质,它可以为我们解决很多的线性代数问题。
在数学和工程的应用中,行列式常常应用于解决线性方程组、矩阵的特征值和特征向量、线性变换、矩阵的可逆性等问题上。
本文将对行列式的定义、基本性质、计算方法以及相关的应用等方面进行详细的讲解。
一、行列式的定义行列式是由数学家Cramer所发明的。
行列式又叫矩阵行列式,是由一个n*n的方阵中所计算出来的一个标量值。
对于二阶方阵$\bold A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,其行列式为:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}$$对于更高阶的n阶矩阵,则可以采用逐步消元的方法来进行求解。
对于一般的n*n阶矩阵A的行列式,我们可以采用下面的定义进行计算:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\end{vmatrix}=\sum_{i_1,i_2,\cdots,i_n} (-1)^{N(i_1,i_2,\cdots,i_n)}a_{1i_1}a_{2i_2}\cdots a_{ni_n} $$其中,$N(i_1,i_2,\cdots,i_n)$表示将$i_1,i_2,\cdots,i_n$从小到大排列时所需的逆序对个数,$a_{1i_1}a_{2i_2}\cdotsa_{ni_n}$为行列式的元素积。