3.3.3升幂排列和降幂排列
- 格式:ppt
- 大小:281.00 KB
- 文档页数:12
§3.3.3 升幂排列与降幂排列【教学目标】1、 使学生学会把一个多项式按某一字母作降幂排列或升幂排列。
2、 培养学生审美观。
【重点难点】把一个多项式按某一字母作降幂排列或升幂排列。
【教学过程】一、 复习提问1、 什么叫做单项式,什么叫做多项式?(由数与字母的乘积组成的代数式叫做单项式;几个单项式的和叫作多项式)2、3x -的底数是 ,幂是 (x ≠0)。
()3x -的底数是 ,幂是 (x ≠0)。
3、单项式c b a 22的系数是 ,次数是 4、多项式153223--+-y x z y y x ,4次项系数 ,3次项系数为 ,常数项为 。
二、 新授:我们已经学习了多项式的概念,知道多项是几个单项式的和。
如多项式12++x x 就是单项式2x ,+x ,+1的和。
问题1如果交换多各式的位置,所得到的多项式与原多项式是否相等?为什么?问题2:任意交换多项式12++x x 中各项的位置,可以得到几种不同的排列方式?请一一列举出来。
(任意交换多项式12++x x 中各项的位置,可以得到6种不同的排列方式。
即12++x x , x +2x +1,x +1+2x ,1+x +2x , 2x +1 +x ,1+2x + x 。
)问题3:在以上六种排列中,你认为哪几种比较整齐?(12++x x 与1+x +2x 这样的排列比较整齐)问题4:你认为是什么特点致使这两种排列比较整齐?[这两种排列有一个共同特点,那就是x 的指数是逐渐变小(或变大)的]。
这样整齐的写法除了美观之外,还会为今后的计算带来方便.因而我们常常把一个多项式各项的位置按照其中某一字母的指数大小顺序来排列.例如,把多项式123532--+x x x 按x 的指数从大到小的顺序排列,可以写成 135223-++-x x x降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
请类比降幂排列意义给出升幂排列定义。
§3.3.3 升幂排列与降幂排列【教学目标】1、 使学生学会把一个多项式按某一字母作降幂排列或升幂排列。
2、 培养学生审美观。
【重点难点】重点:把一个多项式按某一字母作降幂排列或升幂排列的方法。
难点:把多项式进行降、升幂排列的理解。
【教学过程】一、 复习提问1、什么叫做单项式,什么叫做多项式?(由数与字母的乘积组成的代数式叫做单项式;几个单项式的和叫作多项式) ①单项式a²b²c的系数是___,次数是____。
②多项式,153223--+-y x z y y x ,4次项系数为___,3次项系数为____,常数项为___。
二、 新授:我们已经学习了多项式的概念,知道多项是几个单项式的和。
如多项式12++x x 就是单项式2x ,+x ,+1的和。
问题1:如果交换多各式的位置,所得到的多项式与原多项式是否相等?为什么? 相等(加法交换律)问题2:任意交换多项式12++x x 中各项的位置,可以得到几种不同的排列方式?请一一列举出来。
(任意交换多项式12++x x 中各项的位置,可以得到6种不同的排列方式。
即12++x x , x +2x +1,x +1+2x ,1+x +2x , 2x +1 +x ,1+2x + x 。
)问题3:在以上六种排列中,你认为哪几种比较整齐?(12++x x 与1+x +2x 这样的排列比较整齐)问题4:你认为是什么特点致使这两种排列比较整齐?[这两种排列有一个共同特点,那就是x 的指数是逐渐变小(或变大)的]。
这样整齐的写法除了美观之外,还会为今后的计算带来方便.因而我们常常把一个多项式各项的位置按照其中某一字母的指数大小顺序来排列.降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
例如,把多项式123532--+x x x 按x 的指数从大到小的顺序排列,可以写成 135223-++-x x x请类比降幂排列意义给出升幂排列定义。
3.3.3升幂排列与降幂排列根底知识1.把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列,常数项应放在最后面.2.注意:〔1〕重新排列多项式时,每一项一定要连同它的正负号一起移动;〔2〕含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列。
例题例.把以下各多项式先按x 的降幂排列,再按x 的升幂排列. (1)243327x x x --+; (2)4423182x y xy x y -+-. 【答案】(1) 432273x x x -++-,234372x x x -++-;(2) 4324182x x y xy y -+-,4234182y xy x y x -+-+. 【解析】 【分析】(1)(2)都是先分清多项式的各项,然后按多项式降幂和升幂排列的定义排列即可得. 【详解】(1)按x 的降幂排列:432273x x x -++-, 按x 的升幂排列:234372x x x -++-; (2)按x 的降幂排列:4324182x x y xy y -+-, 按x 的升幂排列:4234182y xy x y x -+-+. 【点睛】此题考查了多项式的排列,熟练掌握升幂排列与降幂排列的定义是解题的关键. 练习1.多项式321x x x -++-按x 的升幂排列正确的选项是〔〕 A .231x x x -++ B .231x x x -++ C .231x x x --+D .321x x x -+-2.多项式3x 2﹣x 3+5x 4﹣7+23x ,将该多项式按降幂排列〔〕 A .3x 2﹣x 3+5x 4﹣7+23x B .5x 4+23x+3x 2﹣x 3﹣7 C .5x 4﹣x 3+3x 2+23x ﹣7D .﹣x 3+5x 4+3x 2﹣7+23x3.将多项式2323632a b b ab a +--按字母b 的降幂排列正确的选项是〔〕 A .3322326a b ab a b -+-+ B .3223326b ab a b a -+- C .3322362b a a b ab -+-D .3223623a a b ab b -+-+4.多项式342233x y xy x y x -++按y 的降幂排列是〔 〕 A .432233xy x x y x y +++ B .332243x x y x y xy ++- C .422333xy x y x y x -+++D .422333xy x y x y x ++-5.将多项式32243x xy x y x -++-按字母x 降幂排列,正确的选项是〔〕 A .43223-x x xy x y ++- B .2243-3xy x y x x +++- C .22343-xy x y x x -+++D .4322-3x x x y xy ++-6.把多项式27129x x +-按字母x 做降幂排列为___________________. 7.多项式322341x x x --++,按x 的升幂排列为__________________. 8.把多项式442239235x y xy x y -+-按y 的降幂排列:______________________ 9.把多项式3232243x x y y xy -+-按x 的升幂排列为__________________. 10.多项式23227245x y y x y -++-是________次_________项式,按y 得降幂徘列是___________________.11.将32233x y y 5x 4xy -++按以下要求重新排列: 〔1〕按x 降幂排列; 〔2〕按y 升幂排列.12.把多项式3m n 2﹣2m 2n 3+5﹣8m 3n 重新排列: 〔1〕按m 的降幂排列. 〔2〕按n 的升幂排列.13.多项式2234546357x y xy x y y y x ++-+,解答以下问题: 〔1〕把它按x 的升幂重新排列; 〔2〕把它按y 的降幂重新排列;参考答案1.C【分析】根据升幂排列的定义,将多项式的各项按照x的指数从小到大排列起来.【详解】解:按x的升幂排列为-x+x3+1-x2=1-x-x2+x3.应选:C.【点睛】此题考查了多项式,各项以和的形式组成多项式〔有时加号省略不写〕,所以在升幂或降幂排列时,各项要保持自己原有的符号.2.C【解析】【分析】将多项式的各项按x的次数由高到低依次排列,常数项排在最后.【详解】3x2-x3+5x4-7+23x按x的降幂排列是5x4-x3+3x2+23x-7.应选C.【点睛】此题考查了多项式的知识,一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.3.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,2323b ab a b a-+-;326a b b ab a+--按字母b的降幂排列正确的选项是3223632应选:B.【点睛】此题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.4.C【分析】先分别列出多项式中各项中的y 的次数,再按降幂排列即可. 【详解】解:∵多项式342233x y xy x y x -++中,y 的次数依次1,4,2,0,∴按y 的降幂排列是422333xy x y x y x -+++,应选:C . 【点睛】此题考查了多项式问题,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列. 5.D 【分析】先分别列出多项式中各项的次数,再按要求排列即可. 【详解】解:多项式32243x xy x y x -++-中,x 的次数依次是:3、1、2、4、0, ∴按x 的降幂排列是:24323x y x x xy ++--; 应选择:D. 【点睛】此题考查多项式问题,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列.6.21279x x -++ 【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【详解】解:多项式27129x x +-的项为7x ,-12 x 2,9, 按字母x 降幂排列为21279x x -++, 故答案为:21279x x -++. 【点睛】此题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 7.2312+43x x x -- 【分析】〔按照x 的指数从小到大的顺序把各项重新排列即可. 【详解】解:多项式322341x x x --++,按x 的升幂排列为231243x x x -+-. 故答案为:1-2x+4x 2-3x 3. 【点睛】此题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 8.423242539y x y xy x --++ 【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:49x ,42y -,23xy +,235x y -将各项按y 的指数由大到小排列为42y -,235x y -,23xy +,49x . 【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++.故答案是423242539y x y xy x --++.【点睛】此题考查了多项式的项的概念和降幂排列的概念.〔1〕多项式中的每个单项式叫做多项式的项;〔2〕一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用. 9.3223342y xy x y x --+ 【分析】先分清多项式的各项,然后按多项式中x 的升幂排列的定义排列,即可. 【详解】多项式3232243x x y y xy -+-按x 的升幂排列为:3223342y xy x y x --+, 故答案是:3223342y xy x y x --+ 【点睛】此题考查了多项式的升序或降序排列.解题的关键是掌握多项式的升序或降序排列的方法,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 10.四四32222475y x y x y +-- 【分析】根据多形式的定义解答即可. 【详解】解:多项式23227245x y y x y -++-是四次四项式, 按y 得降幂徘列是32224y x y +275x y --. 故答案为:四,四,32222475y x y x y +--. 【点睛】此题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列. 11.〔1〕32323x y 5x 4xy y ++-;〔2〕23235x 3x y y 4xy +-+ 【分析】从升幂排列和降幂排列的定义解答即可. 【详解】解:〔1〕按x 降幂排列为32323x y 5x 4xy y ++-; 〔2〕按y 升幂排列为23235x 3x y y 4xy +-+. 【点睛】此题主要考查了升幂排列和降幂排列,掌握升幂排列和降幂排列的定义是解题的关键. 12.〔1〕﹣8m 3n ﹣2m 2n 3+3m n 2+5;〔2〕5﹣8m 3n +3m n 2﹣2m 2n 3. 【分析】〔1〕先判断多项式各项m 的次数,然后按m 的降幂进行排列即可; 〔2〕先判断多项式各项n 的次数,然后按n 的升幂进行排列即可. 【详解】解:〔1〕按m 的降幂排列为﹣8m 3n ﹣2m 2n 3+3m n 2+5. 〔2〕按n 的升幂排列为5﹣8m 3n +3m n 2﹣2m 2n 3. 【点睛】此题考查了多项式,解题时先要根据排列要求判断各项中字母的次数,并且注意在排列多项式各项时,要保持其原有的符号.13.(1)见解析;(2)见解析.【分析】〔1〕按字母x的升幂排列是指按字母x的指数从小到大依次排列;〔2〕按字母y的升幂排列指按字母y的指数从小到大依次排列.【详解】解:〔1〕按x的升幂排列为-7y5+xy3+3x2y2+5x4y+y4x6;〔2〕按y的降幂排列为5x4y+3x2y2+xy3+y4x6-7y5.【点睛】此题考查了多项式的有关定义,按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,多项式的次数是“多项式中次数最高的项的次数〞.。
升幂排列与降幂排列➢知识点梳理升幂排列:把一个多项式中各项的位置按照其中某一个字母的指数的大小顺序排列,指数从小到大的顺序的排列叫做升幂排列。
降幂排列:指数从大到小的顺序的排列叫做降幂排列。
注:升降幂排列时将符号一起移动。
➢典例精析1、代数式3x2y-4x3y2-5xy3-1按x的升幂排列,正确的是()A.-4x3y2+3x2y-5xy3-1B.-5xy3+3x2y-4x3y2-1C.-1+3x2y-4x3y2-5xy3D.-1-5xy3+3x2y-4x3y2【答案】D2、将多项式3x2y-xy2+x3y3-x4y4-1按字母x的降幂排列,则下列各式正确的是( ) A.-1-xy2+3x2y+x3y3-x4y4B.-x4y4+x3y3+3x2y-xy2-1C.-x4y4+x3y3-xy2+3x2y-1D.-1+3x2y-xy2+x3y3-x4y4【答案】B3、把多项式3x2+y3﹣5xy2﹣x3,按x的升幂排列正确的是()A.y3﹣5xy2+3x2﹣x3B.﹣x3+3x2﹣5xy2+y3C.y3+5xy2+3x2+x3D.5xy2+3x2﹣x3+y3【答案】A4、把多项式2223242a b ab a +--,按a 的升幂排列正确的是( )A .2223422b ab a a -+-B .2223422b ab a a ++-C .3222224a a ab b -+-+D .2232422b ab a a --+【答案】A 5、把多项式239731m m m ++-按m 的降幂排列后,第3项是( )A .9m 2B .7mC .3m 3D .-1 【答案】B6、将多项式x 3-5xy 2-7y 3+8x 2y 按某一个字母的升幂排列,正确的是()A .x 3-7y 3-5xy 2+8x 2yB .-7y 3-5xy 2+8x 2y+x 3C .7y 3-5xy 2+8x 2y+x 3D .x 3-5xy 2+8x 2y-7y 3【答案】B7、多项式23325231x y x y xy -+-是________次_________项式.并按x 的降幂排列 ________________.【答案】五 四 −2x 3y +5x 2y 3+3xy 2−18、将多项式3232231ab a b a b ---按照b 的指数从小到大的顺序排列为__________.【答案】-1-2a 2b −3a 3b 2+ab 39、把多项式231234232x x x +-+按x 的升幂排列为__________. 【答案】23−4x +12x 2+32x 310、323420.010.13xy x y x y x y ---是____次_____项式,把它按字母x 的降幂排列成_______ ,常数项是________.【答案】六 四 −0.1x 4y 2−0.01x 3y +x 2y −xy 33 0 11、把多项式3m n 2﹣2m 2n 3+5﹣8m 3n 重新排列:(1)按m 的降幂排列.(2)按n 的升幂排列.【答案】(1)−8m 3n −2m 2n 3+3mn 2+5;(2)5−8m 3n +3mn 2−2m 2n 312、已知,m n 是常数,且多项式22222432(21)m x y x y n x y xy mx -++-++是五次四项式.(1)求m 、n 的值;(2)将这个多项式按字母x 的降幂排列.【答案】解析:因为3x 2y +2x 2−m y 2+(2n −1)x 2y 2+xy +mx 4是五次四项式,所以2n-1=0;2-m+2=5,解得n=−12,m =−1降幂排列为−x 4+2x 3y 2+3x 2y +xy13、.有一多项式为1098273x x y x y x y -+-+,若按这样的规律写下去,则它的第七项和最后一项各是什么?这个多项式是几次几项式?【答案】第七项是x 4y 6,最后一项是y 10,这个多项式是十次十一项式.➢ 小题精炼1、多项式232353x y y xy x +--按x 的降幂排列是( )A .223353x y xy y x -+-B .3223 35y xy x y x -+-C .232353x y x xy y --+D .3223 53x x y xy y -+-+【答案】D2、多项式3-2xy+62x y-532x y -44x y 是按照( ).A .按字母x 升幂排列B .按字母y 升幂排列C .按字母x 降幂排列D .按字母y 降幂排列【答案】A3、将多项式232332a b b ab a +--按b 的降幂排列正确的是( ) A .322223b ab a b a -+- B .322332a a b ab b +-+C .322332a a b ab b --+-D .322332a a b ab b -+-+【答案】A 4、把多项式234255273x y x y x y -++按x 的降幂排列后,第三项是( )A .235x yB .422x y -C .7D .53x y【答案】A5、已知多项式3x 2﹣x 3+5x 4﹣7+23x ,将该多项式按降幂排列( )A .3x 2﹣x 3+5x 4﹣7+23xB .5x 4+23x+3x 2﹣x 3﹣7C .5x 4﹣x 3+3x 2+23x ﹣7D .﹣x 3+5x 4+3x 2﹣7+23x【答案】C6、多项式4 a 2b +2b 3-3ab 2- a 3按字母b 的降幂排列正确的是( )A .4a 2b-3ab 2+2b 3-a 3B .–a 3+4a 2b-3ab 2+2b 3C .-3ab 2+4a 2b-a 3+2b 3D .2b 3-3ab 2+4a 2b-a 3【答案】D7、(1)把多项式42234235x x y x y y --+-按y 的降幂排列_________________________.(2)将223231x y xy x --+按x 的降幂排列为_______________________ (3)把多项式232543a b a ab +-按字母b 的降幂排列为_______________________(4)把多项式32242325x y y x xy +++-按字母y 的降幂排列是__________.【答案】(1)42234523y x y x y x --+- (2)322231x x y xy -+-+(3)223354ab a b a -++ (4)42325232xy y x y x -++++8、已知多项式x 4﹣y+3xy ﹣2xy 2﹣5x 3y 3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是 ,三次项的系数是 .(3)按y 的降幂排列为: .(4)若|x+1|+|y ﹣2|=0,试求该多项式的值.【答案】(1)x 4,y ,3xy ,﹣2x y 2,﹣5x 3y 3,﹣1;(2)6,﹣2;(3)﹣5x 3y 3﹣2x y 2﹣y+3xy +x 4﹣1;(4)40.9、已知多项式-3x 2y m+1+x 3y-3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同.(1)求m 、n 的值;(2)把这个多项式按x的降幂排列.【答案】(1)m=2,n=2;(2)按x的降幂排列为−3x4+x3y−3x2y3−1解析:因为−3x2y m+1+x3y−3x4−1是五次四项式,;所以2+m+1=5;解得m=2;因为单项式3x2n y3−m次数与多项式相同;所以2n+3-m=5,解得n=2;(2)降幂排列为:−3x4+x3y−3x2y3−110、(1)已知代数式:4x﹣4xy+y2﹣x2y3.①将代数式按照y的次数降幂排列;②当x=2,y=﹣1时,求该代数式的值.(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.【答案】(1)①﹣x2y3+y2﹣4xy+4x;②21;(2)1.解析:(1)−x2y3+y2−4xy+4x(2)当x=2,y=-1时,原式=4×2−4×4×(−1)+(−1)2−22(−1)3=21(3)因为−(m+3)x2y|m+1|z+(2m−n)x2y+5为五次二项式。
升幂排列与降幂排列
课型:新授课
一、学习目标确定的依据
1、课程标准
会把一个多项式按某个字母的升幂或降幂排列。
2、教材分析
本节课是初中数学华师大版七年级上册第3章整式的加减部分整式的第三节,升幂排列或降幂排列实际是将多项式整理成简洁的形式。
3、中招考点
近5年均无直接出考察升幂排列和降幂排列的试题。
4、学情分析
学生对升幂排列与降幂排列上学习接受上比较快。
就是在对常数的时候容易迷糊。
二、学习目标
能说出什么是升幂排列和降幂排列;会把一个多项式按某一字母作升幂或降幂排列。
三、评价任务
向同桌说出升幂排列和降幂排列的概念,会把一个多项式按某一字母作升幂或降幂排列。
四、教学过程。
3.3整式3.3.3升基挑列与冷军排列一、基本目标【学问与技能】1、使学生相识到进行升幕排列与降鼎排列的必要性;2、要求学生能精确、快速依据某个字母进行升第排列或是降幕排列.二、重难点目标【教学重点】如何进行升基排列或是降基排列.一、学问导向:本节课以多项式的学习为基础,通过适当培育学生的数学美感,从而说明进行升第排列或是降哥排列的必要性。
在学问的讲解中应注意于排列的方法与技巧,特殊是应找到学生易出错的学问误点.二、新课拆析:1、学问尝试:从多项式χ2+χ+l的随意排列(运用加法交换律),我们知道:此多项式有多种的排列方式,这就要求能从中找到更好的排列方式.2、学问形成:从尝试的结果我们知道:随意交换多项式/+χ+l中各项的位置,可以得到6种不同的排列方式,在这其中排列方式中,“χ2+χ+i”与"i+x+42”的排列是比较整齐的,为什么?我们可以发觉:这两种排列方式有一个共同特点:X的指数呈现一种渐渐变大或渐渐变小的。
从上面的两种整齐的写法,我们发觉:除了美观之外,还会为今后的计算带来便利,因而我们经常把一个多项式各项的位置根据其中一字母的指数大小依次来排列.概括:把一个多项式根据同一个字母的指数从大到小的依次排列,叫做这个多项式按此字母的降用排列;把一个多项式根据同一个字母的指数从小到大的依次排列,叫做这个多项式按此字母的升辕排列;注:(1)重新排列多项式时,每一项肯定要连同它的符号一起移动;(2)含有两个或两个以上字母的多项式,经常根据其中某一字母升幕排列或降幕排列.所以,“炉+工+1”是按X的降幕排列,“l+x+炉”是按X升哥排列.例:把多项式2“一1+q兀/一11产按r升塞排列.3例:把多项式标+/7/人-^^从重新排列:(1)按。
升累排列;(2)按4降幕排列.例:把多项式一1+2京2-%+∕y按X升嘉排列三、巩固训练:PlOO练习题四、学问小结:本节课的学习涉及到数学美感的问题,通过对多项式根据某一个字母的指数从大到小或是从小到大的依次重新排列,在排列中必需相识到排列后的结果仍旧是一个多项式,只是项的位置发生了肯定的改变而己.请完成本课时对应练习!。