无分电器点火系统
- 格式:doc
- 大小:1000.19 KB
- 文档页数:11
无分电器点火系统的工作原理一、介绍在汽车发动机点火系统中,无分电器点火系统是一种常见的点火系统。
它的工作原理基于给定时机点火,从而使混合气体在汽缸中可靠燃烧,进而驱动汽车运行。
本文将深入探讨无分电器点火系统的工作原理。
二、点火系统概述点火系统是汽车发动机工作的关键部分之一。
它负责在汽缸内点燃气体混合物以产生爆炸能力,从而推动活塞运动。
无分电器点火系统是通过磁场感应原理工作的,它不需要传统的分电器和点火线圈,而是直接利用信号控制单元进行点火。
三、无分电器点火系统的组成部分无分电器点火系统主要由以下几个组成部分组成: 1. 控制模块:控制整个点火系统的工作,根据发动机转速、负荷以及其他传感器信号来决定点火时机。
2. 放电模块:控制点火线圈中的高压电能释放,产生高压电火花点火。
3. 传感器:用于检测发动机的转速、位置和其他参数,向控制模块提供反馈信号。
四、无分电器点火系统的工作原理无分电器点火系统的工作原理可以分为以下几个步骤:4.1 传感器信号检测发动机中的传感器会实时监测各项参数,并将监测结果传送给控制模块。
这些传感器包括转速传感器、曲轴位置传感器等。
控制模块会根据这些传感器信号来判断发动机的工作状态。
4.2 控制模块计算点火时机控制模块根据传感器提供的信息,利用事先设定好的曲线和映射表计算出点火时机。
点火时机是指点火系统释放高压电火花的时间点,它决定了混合气体的燃烧质量和效率。
4.3 电能放大和释放控制模块通过放电模块控制点火线圈中的高压电能释放。
高压电能在点火线圈的作用下,通过点火塞产生电火花,点燃混合气体。
4.4 燃烧和能量输出电火花点燃混合气体后,燃烧产生的能量会推动活塞运动,驱动发动机正常工作。
同时,排出废气和产生动力输出。
五、无分电器点火系统的优势与传统的分电器点火系统相比,无分电器点火系统具有以下几个优势: 1. 减少能量损耗:无分电器点火系统通过控制模块计算点火时机,使得点火能量精确控制,减少能量损耗。
点火系统的种类与特点由于发动机点火时刻和初级线圈电流的不同控制方法,产生了不同的点火系统。
按点火系统的不同发展阶段可分为:传统机械触点点火系统、无触点点火系统、微机控制式电子点火系统和微机控制式无分电器电子点火系统。
1.传统机械式触点点火系统:传统的点火系统其点火时刻和初级线圈电流的控制是由机械传动的断电器触点来完成的。
由发动机凸轮轴驱动的分电器轴控制着断电器触点的张开、闭合的角度和时刻与发动机工作行程的关系。
为了使点火提前角能随发动机转速和负荷的变化自动调节,在分电器上装有离心式机械提前装置和真空式提前装置来感知发动机的转速和负荷的变化。
机械式点火系统最大的缺点是因为断电器与驱动凸轮之间机械联动因此闭合角不能变化,而闭合时间和发动机转速的变化有很大的关系,当发动机转速升高时触点闭合时间缩短,初级线圈电流减小点火能量降低;当发动机转速降低时闭合时间又过长,造成线圈中电流过大容易损坏。
这是机械触点点火系统无法克服的缺点。
2.无触点电子点火系统:为了避免机械触点点火系统触点容易烧蚀损坏的缺点,在晶体管技术广泛应用后产生了非接触式传感器作为控制信号,以大功率三极管为开关代替机械触点的无触点电子点火系统。
这种系统显著优点在于初级电路电流由晶体三极管进行接通和切断,因此电流值可以通过电路加以控制。
不足之处在于这种系统中的点火时刻仍采用机械离心提前装置和真空提前装置,对发动机工况适应性差。
3.微机控制式电子点火系统:为了提高点火系统的调整精度和各种工况的适应性,在电子点火系统的基础上,采用了微机控制。
系统的特点是:不但没有分电器,而且在提前角的控制方面也没有离心提前装置和真空提前装置。
从初级线圈电流的接通时间到点火时刻全部采用微机进行控制。
其工作原理如下:微机系统通过传感器检测发动机的转速和负荷的大小,由此查阅存在内部存储器中的最佳控制参数,从而获得这一工况下的最佳点火提前角和点火线圈初级电路的最佳闭合角,通过控制三极管的通断时间实现控制目的。
汽车电子控制系统英文缩写AFM 空气流量计AIC 空气喷射控制AIS 空气喷射系统ALT 海拔开关A/M 自动—手动ASC 自动稳定性控制AT(A/T) 自动变速器ATS 空气温度传感器B+ 蓄电池正极BPA 旁通空气BPS 大气压力传感器BTSC 上止点前CCS 巡航控制系统CFI 中央燃油喷射CFI 连续燃油喷射CID 判缸传感器CIS (燃油)连续喷射系统CIS气缸识别传感器(判缸传感器) CNG 天然气CNGV 天然气汽车CPS 轮轴位置传感器CPS 曲轴位置传感器CPU 中央处理器CTP 节气门关闭位置CTS 冷却液温度传感器CYL 气缸(传感器)DC 直流电DI 分电器点火DIS 无分电器点火系统DIAGN 诊断DLC 数据线接DLI 无分电器点火DTC 诊断故障码ECA 电子控制点火提前ECCA发动机集中控制系统ECD 电子控制柴油机ECM 发动机控制模块ECT 电控变速器ECT 发动机机冷却液温度ECU 电子控制单元(电脑) EDS 柴油机电控系EEC 发动机电子控制EFI 电控燃油喷射EGI 电控汽油喷射EGR 废气再循环EIS 电子点火系统EPA 环保机构ER 发动机运转ESA 电子点火提前EST 电子点火正时EUT 电子控制燃油喷射系统EVAP燃油蒸气排放控制装置FP 燃油泵FTMP 燃油温度FFM 热膜式空气质量流量计HAC 海拔(高度)补偿阀HEI 高能点火HEUI液压电子控制燃油喷射系统HIC 热怠速空气补偿阀HO2S 加热型氧传感器HZ 故障灯IAA 怠速空气调整IAB 进气旁通控制系统IAC 进气控制IACV 进气控制阀常用汽车英文缩写含义全攻略Quattro-全时四轮驱动系统Tiptronic-轻触子-自动变速器Multitronic-多极子-无级自动变速器控制系统ABC-车身主动控制系统DSC-车身稳定控制系统VSC-车身稳定控制系统TRC-牵引力控制系统TCS-牵引力控制系统ABS-防抱死制动系统ASR-加速防滑系统BAS-制动辅助系统DCS-车身动态控制系统EBA-紧急制动辅助系统EBD-电子制动力分配系统EDS-电子差速锁ESP-电子稳定程序系统HBA-液压刹车辅助系统HDC-坡道控制系统HAC-坡道起车控制系统DAC-下坡行车辅助控制系统A-TRC--车身主动循迹控制系统SRS-双安全气囊SAHR-主动性头枕GPS-车载卫星定位导航系统i-Drive--智能集成化操作系统Dynamic.Drive-主动式稳定杆发动机R-直列多缸排列发动机V-V型汽缸排列发动机B-水平对置式排列多缸发动机WA-汪克尔转子发动机W-W型汽缸排列发动机Fi-前置发动机(纵向)Fq-前置发动机(横向)Mi-中置发动机(纵向)Mq-中置发动机(横向)Hi-后置发动机(纵向)Hq-后置发动机(横向)气门OHV-顶置气门,侧置凸轮轴OHC-顶置气门,上置凸轮轴DOHC-顶置气门,双上置凸轮轴CVT C-连续可变气门正时机构VVT-i--气门正时机构VVTL-i--气门正时机构V-化油器ES-单点喷射汽油发动机EM-多点喷射汽油发动机SDi-自然吸气式超柴油发动机TDi-Turbo直喷式柴油发动机ED-缸内直喷式汽油发动机PD-泵喷嘴D-柴油发动机(共轨)DD-缸内直喷式柴油发动机缸内直喷式发动机(分层燃烧/均质燃烧)TA-Turbo(涡轮增压)NOS-氧化氮气增压系统MA-机械增压FF-前轮驱动FR-后轮驱动Ap-恒时全轮驱动Az-接通式全轮驱动ASM 动态稳定系统AYC主动偏行系统ST-无级自动变速器AS-转向臂QL-横向摆臂DQL-双横向摆臂LL-纵向摆臂SL-斜置摆臂ML-多导向轴SA-整体式车桥DD-德迪戎式独立悬架后桥 VL-复合稳定杆式悬架后桥FB-弹性支柱DB-减震器支柱BF-钢板弹簧悬挂SF-螺旋弹簧悬挂DS-扭力杆GF-橡胶弹簧悬挂LF-空气弹簧悬挂HP-液气悬架阻尼HF-液压悬架QS-横向稳定杆S-盘式制动Si-内通风盘式制动T-鼓式制动SFI-连续多点燃油喷射发动机FSI-直喷式汽油发动机PCM - 动力控制模块~EGR -废气循环再利用BCM - 车身控制模块~ICM - 点火控制模块~MAP - 空气流量计ST-无级自动变速器FF-“前置引擎前轮驱动”FR-“前置引擎后轮驱动”RR-“后置引擎后轮驱动”CDI-common-rail diesel injection 共轨柴油直喷 GDI-gasoline direct injection 汽油直喷IAR 进气谐振器IAT 进气温度IC 点火控制IC 集成电路ICM 点火控制模块IDL 怠速IDM 点火诊断监控器IDM 喷油器驱动模块IGD点火检测信号(缸序判别)IGF 点火反馈信号IGN 点火IGSW 点火开关IGT 点火正时信号IMV 进气歧管真空度INJ 喷油器ISA 怠速执行器ISC 怠速控制ISCA 怠速控制执行器ISCV 怠速控制阀KC 爆燃控制KS 爆燃传感器LED 发光二极管LH 热线式空气流量计LPGV 液化石油气LPGV 液化石油气汽车MAF 空气质量流量MAP 进气管绝对压力传感器MAT 进气管空气温度MFI 多点燃油喷射MIL 故障指示灯MPI 多点喷射N/C空档起动开关/离合器开关NPS 空档/驻车开关NSW 空档起动开关O2氧传感器OBD 随车电脑诊断系统OC 氧化催化O2S 氧传感器OX、OXS 氧传感器PCV 曲轴箱强制通风PFI 进气口燃油喷射P/N 停车/空档PNP 停车/空档位置RAM 随机存储器ROM 只读存储器SABV 二次空气旁通阀SAE 汽车工程学会(美国) SAMC 一次空气控制系统SEFI 顺序电子燃油喷射SFI 顺序燃油喷射SPI 单点喷射SPD 速度传感器SSD 专用维修工具STA 起动STJ 冷起动喷油器TAP 节气门转角(开度)位置TBI 节气门体燃油喷射TC 涡轮增压器TDC 上止点TDCL 丰田诊断插座THA 进气温度THW 冷却液温度TP 节气门位置TPI 进气口喷射TPS 节气门位置传感器TWC 三元催化转化器TRC 驱动力控制(牵引)系统VAF 叶片式空气流量计VAF 体积式空气剂量计VAT 进气温度AAS 怠速空气调节螺丝ABV 空气旁通阀ABS 制动防抱死系统AC 交流电A/C 空调ACC 活性炭罐ACIS 声控进气系统ACT 进气温度ACU空调怠速提升真空开关阀ACV 二次空气喷射阀A/F 空燃比AFS 空气流量传感器ASR 加速防滑控制系统TCS 循迹控制系统ETS 电子循迹支援系统ESP 电子稳定系统EBD 电子制动力分布EBA 电子控制制动EPS 电子方向助力系统PCM 动力控制单元汽车英文缩写字母代表的含义不同规格的汽车有许多不同的代号、字母和数字,现将汽车规格表的内容介绍如下:一、车型二、传动系统三、发动机系统即其气缸排列在两侧,成“V”字型,“6、8、12”表示气缸数量,V6表示“6缸V型发动机”,其优点是发动机的布置紧凑,占用空间小。
第二节微机控制的点火系统的组成与原理微机控制的点火系是70年代末开始使用无触点点火装置后的又一重大进展,其最大的成功在于实现了点火提前角的自动控制,即可根据发动机的工况对点火提前角进行适时控制。
因而可获得混合气的最佳燃烧,从而能最大限度的改善发动机的高速性能,提高其动力性、经济性,减少排气污染。
而普通的无触点点火系采用机械方式调整点火时刻,因为机械装置本身的局限性,无法保证在各种状况下点火提前角均处于最佳。
此外,由于分电器中的运动部件的磨损,又会导致驱动部件松旷,影响点火提前角的稳定性和均匀性。
全电子点火系则可完全避免此类现象产生。
在微机控制的点火系统中,点火控制包括点火提前角的控制、通电时间控制和爆燃控制等三个方面,并具有以下特点:1)在所有的工况及各种环境条件下,均可自动获得理想的点火提前角,从而使发动机在动力性、经济性、排放性及工作稳定性等方面均处于最佳。
2)在整个工作范围内,均可对点火线圈的导通时间进行控制。
从而使线圈中存储的点火能量保持恒定不变,提高了点火的可靠性,可有效地减少能源消耗,防止线圈过热二此外,该系统可很容易实现在整个工作范围内提供稀薄燃烧所需恒定点火能量的目标。
3)采用闭环控制技术后,可使点火提前角控制在刚好不发生爆燃的状态,以此获得较高的燃烧效率,有利于发动机各种性能的提高。
微机控制的点火系统一般由电源、传感器、电子控制系统(ECU)、点火控制模块、分电器、火花塞等组成,如图5-1所示。
l)电源一般由蓄电池和发电机共同组成,可供给点火系统所需的点火能量。
2)点火线圈能将点火瞬间所需的能量存储在线圈的磁场中,还可将电源提供的低压电转变为足以在电极间产生击穿点火的15 --- 20kV高压电。
3)分电器可根据发动机的工作时序,将点火线圈产生的高压电依次送到各缸火花基。
4)火花塞将具有一定能量的电火花引人气缸,点燃气缸内的混合气。
5)传感器主要用于检测发动机各种运行参数的变化,为ECU提供点火提前角的控制依据。
奥迪200轿车点火系统分析一概述汽油机在压缩接近上止点时,可燃混合气是由火花塞点燃的,从而燃烧对外作功,为此,汽油机的燃烧室中都装有火花塞。
火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。
当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系统。
发动机点火系统1.传统点火系统:分为蓄电池点火系和磁电机点火系2.电子点火系统:(1)晶体管点火系TI-B(Breaker-Triggered transistorized Ignition)(2)半导体点火系SI(semiconductor Ignition)(3)无分电器点火系DIS(Distributorless Ignition System)传统点火系统机械式点火系统工作过程是由曲轴带动分电器轴转动,分电器轴上的凸轮转动,使点火线圈次级触点接通与闭合而产生高压电。
这个点火高压电通过分电器轴上的分火头,根据发动机工作要求按顺序送到各个气缸的火花塞上,火花塞发出电火花点燃燃烧室内的气体。
分电器壳体可以手动转动来调节基本的点火提前角(即怠速运转时的点火提前角),同时还有真空提前装置,它根据进气管内真空度的变化提供不同的提前角。
电子点火系统电子点火系统与机械式点火系统完全不同,它有一个点火用电子控制装置,内部有发动机在各种工况下所需的点火控制曲线图(MAP图)。
通过一系列传感器如发动机转速传感器、进气管真空度传感器(发动机负荷传感器)、节气门位置传感器、曲轴位置传感器等来判断发动机的工作状态,在MAP图上找出发动机在此工作状态下所需的点火提前角,按此要求进行点火。
然后根据爆震传感器信号对上述点火要求进行修正,使发动机工作在最佳点火时刻。
电子点火系统也有闭环控制与开环控制之分:带有爆震传感器,能根据发动机是否发生爆震及时修正点火提前角的电控系统称为闭环控制系统;不带爆震传感器,点火提前控制仅根据电控单元内设定的程序控制的称为开环控制系统。
课 时 计 划
第 周 编写日期: 年 月 日 课
题 第二节 无分电器ECU 控制点火系统测试、诊断与维修
教学目的与
要 求 1.了解无分电器ECU 控制点火系统的特点;
2.掌握无分电器ECU 控制点火系统的基本构成、工作原理及控制电路的分析方法;
3.掌握无分电器ECU 控制点火系统控制电路及元件的检测方法;
4.掌握无分电器ECU 控制点火系统的故障诊断与排除方法。
教学重点 1.无分电器ECU 控制点火系统的基本构成、工作原理及控制电路的分析方
法;
2.无分电器ECU 控制点火系统控制电路及元件的检测方法;
3.无分电器ECU 控制点火系统的故障诊断与排除方法。
教学难点 1.无分电器ECU 控制点火系统的基本构成、工作原理及控制电路的分析方
法;
2.无分电器ECU 控制点火系统控制电路及元件的检测方法;
课 时
4 教具准备 轿车一部或发动机实训台一台、常用拆装工具一套、常用诊断工具一套
教学方法 一体化教学
教 学 过 程 一、任务引入
无分电器ECU 控制点火系统又称为直接点火系统(见图6-22),其特点是彻底取消了分电器,原分火头的分电功能也由ECU 取代,ECU 不仅要控制点火正时,还要控制点火顺序。
该系统没有任何可运动的机械装置,因而机械运动与磨损方面的故障被彻底消除。
该点火系统的电路及有关部件发生故障,同样会造成发动机不能运转或运转不良。
图6-22无分电器ECU 控制点火系统的组成
二、任务分析
无分电器ECU控制点火系统的配电方式有二极管分电、点火线圈分电两种,点火方式也有双缸同时点火、各缸独立点火两种,如图6-23所示。
类型不同,系统构成及电路原理会有所不同,故障检查的方法也会有所差别。
图6-23各缸独立点火与双缸同时点火的结构对比
三、相关知识
1.各缸独立式ECU控制点火系统
图6-24各缸独立式点火系统(点火器与点火线圈制成一体)
图6-25 各缸独立式点火系统(点火器单独设置)
图6-26点火系统各元件在汽车上的布置
2.双缸同时点火式ECU控制点火系统
(1)点火线圈配电
图6-29 丰田公司双缸同时点火系统电路原理图
图6-30 IGT和IGDA、IGDB信号之间的关系
图6-31奥迪汽车无分电器点火系统
(2)二极管配电
图6-32二极管配电用点火线圈及基本电路
图6-33 二极管配电点火控制原理
3.点火线圈的结构
图6-34 各缸独立点火式点火器-点火线圈组件图6-35 双缸同时点火式点火器-点火线圈组件
四、任务实施
1.实训目的
①能够进行跳火试验;
②能够根据跳火试验的结果进行故障分析;
③能够对点火系统各元件及线路进行检查与故障排除。
2.设备准备
采用双缸同时点火的丰田汽车一辆;丰田故障诊断仪一台;万用表一只;通用工具一套;1.5V干电池三节(串联起来);导线6根;12V蓄电池一只;发动机舱防护罩一套;“三件套”一套。
3.实训步骤
实训项目一
点火系统故障诊断
注意事项:发动机正在运转时,不允许断开蓄电池的接线。
1)跳火试验
单独进行各缸火花塞的跳火试验,可查明哪个汽缸不产生火花。
①拆下所有喷油器的连接器,使其不能喷射燃料;
②拆下点火器连接器,拆下点火线圈(带点火器)和火花塞;
③重新将火花塞装入点火线圈内;
④连接点火器连接器,将火花塞壳体搭铁;
⑤接通电源,起动发动机,检查火花塞是否产生火花。
2)故障检测、诊断与排除(以丰田汽车、14号故障代码为例)
(1)读取故障代码并分析故障原因
利用发动机自诊断系统,读取故障代码(读码方法见课题9),得出故障代码为“14”;查阅维修手册,得知故障代码为“14”的含义为“ECU连续6次接收不到IGF信号”;分析14号故障代码产生的原因,如下图所示。
图6-36ECU接收不到IGF信号的原因分析
(2)确定故障区域
可以通过跳火实验、测量IGT信号、测量IGF参考电压等多种方法进行故障区域划分。
通过跳火实验划分故障区域的方法见6-37。
其他划分方法请结合电路控制原理自己分析。
图6-37通过跳火实验进行故障区域划分
(3)检查各可能发生故障的元件及线路
①检查IGT信、IGF信号及相应线路。
②检查IGDA、IGDB信号及相应线路。
③检查点火器。
④检查点火线圈。
⑤检查高压线。
⑥检查火花塞的绝缘性。
实训项目二
点火系统(丰田卡罗拉1ZR-FE发动机)
(1)检查点火线圈总成的供电电压
(2)检查点火线圈总成IGF信号线路
(3)检查点火线圈总成IGT信号线路
(4)检查点火线圈总成搭铁电路
(5)检查点火线圈总成电源线路
(6)检查ECU电源电路
基本资料:丰田卡罗拉1ZR-FE发动机点火系统如图6-38所示,点火控制电路如图6-39所示。
其中,各点火器与点火线圈制为一体,形成四个点火线圈总成。
图6-38 丰田卡罗拉1ZR-FE发动机点火系统图6-39 1ZR-FE发动机点火控制电路
图6-40点火线圈总成线束侧连接器
图6-41 ECU线束侧连接器
图6-42丰田卡罗拉1ZR-FE发动机点火线圈电源电路
图6-43 IG2继电器(集成继电器)连接器
4.实训要求
①养成安全防护、使用发动机舱防护罩、“三件套”的职业习惯。
②注意零件、工具、油水“三不落地”。
③操作仔细认真,避免造成设备损坏。
④故障诊断的思路要清晰。
五、小结
无分电器ECU控制点火系统的最大特点是:彻底取消了分电器,分电任务由ECU完成,即ECU既要控制点火正时,又要控制点火顺序。
无分电器ECU控制点火系统的分电方式有二极管分电、点火线圈分电两种,点火方式也有双缸同时点火、各缸独立点火两种。
各缸独立式ECU控制点火系统中,每个火花塞都单独配置了一个点火线圈,点火线圈分电双缸同时点火系统中,点火线圈的数量为汽缸数的一半,二极管分电双缸同时点火系统只有一个点火线圈,点火线圈内部有4个用于分电的高压二极管。
丰田车系中,ECU共向点火器输出三个信号:IGT、IGDA和IGDB,其中,IGT主要用于点火正时的控制;IGDA和IGDB主要用于点火顺序的判断。
另外,ECU还接收一个来自点火器的点火确认信号(IGF信号)。
无分电器ECU控制点火系统的故障诊断也需要读取故障代码,并根据点火电路的工作原理分析故障原因,制订合理的故障诊断方案。
点火系统检查的内容主要包括:点火线圈总成供电电压及电源线路的检查、IGF信号线路的检查、IGT信号线路的检查、点火线圈总成搭铁电路的检查等。
布置练习
信
息
反
馈
实用标准文档文案大全。