继电器接触器控制电路的分析与设计
- 格式:ppt
- 大小:760.50 KB
- 文档页数:16
8.《电工技术基础》复习题-继电接触控制系统《电工技术基础》复习题继电接触控制系统一、填空题1、继电器接触器控制系统中常用的控制原则有时间原则、行程原则、速度原则、电压原则、电流原则。
实现这些原则分别要依靠相应的继电器时间继电器、行程开关、速度继电器、电压继电器、电流继电器。
2、在电动机的继电器接触器控制电路中,零压保护的功能是通过交流接触器来实现的。
3. 某一控制电路,只有在按下按钮时,电动机才能起动运转,松开按钮时,电动机立即停止运转,这种控制方式称为点动控制4. 在三相鼠笼式异步电动机的正反转控制电路的辅助电路中,为了防止电源短路事故,采用了联锁保护环节,其接线方式是:两个接触器的线圈分别与对方的动断辅助触点相串联。
5.时间继电器的主要部件包括、。
触点中包括和。
就其功能而言可以分为和两类。
通电延时式是;断电延时式是;瞬时动作触点只要有电或失电,触点。
答案:吸引线圈、触点。
瞬时动作触点、延时动作触点。
通电延时式、断电延时式。
吸引线圈通电时,触点延时动作;吸引线圈断电时,触点延时动作;只要吸引线圈通电或断电时,触点立即动作。
6. 继电器接触器控制电路由主电路和控制电路组成。
7.控制电路中的每一个分支只能有也必须有一个吸引线圈,以保证线圈获得额定电压。
8. 继电器接触器控制电路的基本分析方法有哪些:(1) (2)(3)(4)(5)(6)。
答案:(1)先看主电路,分析控制对象可能有有那些动作;(2)再看控制电路,通常由上向下逐行扫描,看有哪些控制电路,了解它们的功能;(3)分析准备状态各电器的工作状态:即没有人工操作之前各电器是否有电或是否有机械力作用。
(4)按下启动按钮,查看有关电器的动作,分析启动过程:当每个电器线圈有电或失电时,应逐一分析其全部触电的动作极其产生的结果,列表记录以备忘。
(5)按下停车按钮分析停车及制动过程。
(6)查看保护环节。
9.接触器的额定值有线圈电压、主触点电流。
10.当控制电路启动时,交流接触器产生强烈颤动是因为铁芯上短路铜环脱落。
继电器控制实验报告篇一:继电保护实验报告实验一电磁型电流继电器和电压继电器实验一.实验目的1.熟悉DL型电流继电器和DY 型电压继电器的实际结构,工作原理、基本特性。
2.掌握动作电流、动作电压参数的整定。
二.实验原理线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联并联,可获得不同的额定值。
三.实验设备四.实验内容1. 整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试:返回系数是返回与动作电流的比值,用Kf表示:Kf?IfjIdj1(2)低压继电器的动作电压和返回电压测试:返回系数Kf为 Kf?UfjUdj五.思考题1、电流继电器的返回系数为什么恒小于1?电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。
2、返回系数在设计继电保护装置中有何重要用途?对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。
因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。
2实验二电磁型时间继电器实验一.实验目的熟悉DS-20C系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法,二.原理说明当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。
在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。
再经过一定时间后,终止触点闭合。
从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。
当线圈断电时,铁芯和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。
三.实验设备四.实验内容1.动作电压、返回电压测试2.动作时间测定3五.思考题1.影响起动电压、返回电压的因素是什么?首先是你使用的CCFL的规格;其次是环境温度;再次是工作的频率。
继电器—-——---接触器控制系统电路设计1、要求画出主电路和控制电路原理图,设计二台电动机M1,M2电气控制电路,使其满足以下条件:1)M1要求正反转控制,以及正向点动控制2)M1启动后,M2才能启动。
3)停车时,M1停止后M2才能停止.两台电动机均有短路和长期过载保护.2、设计两台电动机M1、M2电气控制电路,使其满足以下工作条件:1)M1可正反向点动控制;2)M1先启动,经过t秒后M2自动启动;3)停车时,M2停止后,M1才允许停止。
要求:画出主电路和控制电路原理图,两台电机均有短路和长期过载保护。
3、有两台电动机M1、M2,请设计主电路和控制电路。
要求如下:1)M1电动机既能点动,又能长动;2)在M1电动机启动之前,M2电动机不能启动。
3)M2电动机能够在两个地方进行启动。
4)当按下停止按钮时,两台电动机均停止。
5)要有短路保护和过载保护。
4、为两台异步电动机设计一个控制回路,要有主电路图和控制电路图,要求如下:1)两台电动机互不影响的独立操作2)能同时控制两台电动机的启动和停止3)当一台电动机发生过载时,两台电动机均停止。
5、机床由两台三相鼠笼式异步电动机M1与M2拖动,其电气控制要求如下:1)M1采用星—三角降压启动2)M1启动经20秒后方允许M2直接启动3)M2停车后方允许M1停车4)M1,M2的启动,停止均要求两地操作5)设置必要的电气保护.6、某机床的主轴和液压泵分别由两台笼型异步电动机M1、M2来拖动,设计控制线路,其要求如下:1)主轴电动机M1启动后液压泵电动机M2才能启动;2)主轴电动机M1能正反转,且能单独停车;3)设计必要的保护环节。
7、用时间继电器控制水泵开1分钟停30秒,自动循环,有过载及短路保护。
8、机床由三台三相鼠笼式异步电动机拖动,其电气控制要求如下:1)顺序启动;2)逆序停止;3)有必要的保护环节。
9、某工厂需要安装一台电动机,这台电动机需要实现正转10分钟—-停10分钟——反转10分钟-—再停10分钟-—再正转,如此循环工作2小时。
常用继电器-接触器控制电路解析1.利用速度继电器对三相异步电动机反接制动原理:SB2按下→KM1有电且自锁→电机全压启动,转速很快达到120r/min,此时速度继电器触点动作,为反接制动做好准备→当SB1按下→KM1失电,同时KM2得电并自锁保持,串接制动电阻R反接制动(将电流消耗到电阻R上)→转速迅速下降,当转速小于100r/min时,速度继电器的触点复位→切断KM2,使其失电,制动过程结束。
2.三相异步电动机Y-∆起动原理:SB1(起动按钮)按下→KM1得电并且自锁,同时时间继电器KT得电(开始计时),KM3得电→KM1,KM3得电,三相异步电动机接成Y型起动→当设定的时间到达后,延时继电器KT的延时断开触点使KM3失电,延时继电器KT的延时接通触点使KM2得电→此时KM1得电,KM2得电,KM3失电→三相异步电动机接成∆起动。
3.定子串电阻降压启动原理:SB1按下→KM2得电,并且自锁,同时时间继电器,KT得电开始计时→KM2得电,定子串接电阻R降压启动→当设定的时间到后,KT的延时接通触点使KM1得电,并且自锁→KM1得电,在主电路中相当于短接了电阻R,三相异步电动机全压运行。
4.自耦变压器降压启动(带指示灯)原理:SB2按下→KM1得电并且自锁,同时KT得电(开始计时)→KM1有电,在主电路中,自耦变压器抽头降压启动→当设定时间到后,延时继电器常开触点闭合,中间继电器K得电并自锁→使得KM1断电,KM2得电→三相异步电动机全压工作。
控制电路中的变压器使指示灯工作在安全电压下(一般,交流36V)→HL3为上电指示灯(K和KM1均不得电);HL2为降压启动指示灯(K失电,但KM1得电);HL3为全压工作指示灯(KM2得电)。
5.转子绕组串电阻启动(针对于绕线式异步电动机)原理:合上QS,SB2按下→KM4得电,并自锁保持(此时,电动机转子串接全部电阻降压启动)→中间继电器KA4得电,为KM1,KM2,KM3的得电做好准备,由于刚启动时电流很大,KA1-KA3吸和电流相同,因此同时得电吸和,其常闭触点都断开,使KM1-KM3处于失电状态,转子电阻全部串入,达到限流和提高转矩的目的。
接触器式继电器的原理及接法一、接触器式继电器的概述接触器式继电器(Contactor)是一种电气控制器件,能够通过电磁力控制开关电路的闭合和断开。
它由电磁系统和电气系统两部分组成,通过拉合线圈产生电磁吸引力或排斥力来控制触点的开关动作。
接触器广泛应用于电力系统、电动机控制、电动机起动和停止等领域。
二、接触器式继电器的原理接触器式继电器的原理基于电磁感应和磁力作用。
当接触器的线圈通电时,经过铁芯磁导强的作用,会在铁芯上产生较强的磁场。
这个磁场会吸引或排斥铁芯上的活动铁块,进而改变触点状态。
接触器式继电器通常由激磁线圈、主触点和辅助触点组成。
激磁线圈中通以控制电流,产生磁场。
主触点是接触器的主要开关,通过激磁线圈的电流产生的磁场控制触点的稳定闭合和断开。
辅助触点则用于对其他电路进行控制或信号传输。
三、接触器式继电器的接法接触器式继电器的接法可以根据具体应用的需求来决定。
下面介绍几种常见的接法。
1. 直流控制回路接法在直流控制回路中,接触器的线圈接通直流电源,触点则用于控制其他电路的开关。
直流控制回路中,常采用一个交流电源和一个整流器来供电。
触点间的闭合和断开取决于线圈接通和断开的时序。
2. 交流控制回路接法在交流控制回路中,接触器的线圈接通交流电源,触点则用于控制其他电路的开关。
与直流控制回路不同,交流控制回路中的触点闭合与断开是通过线圈的正负半周来控制的。
3. 辅助触点和继电器的组合接法接触器式继电器的辅助触点可以用于控制其他电路。
辅助触点是通过激磁线圈产生的磁场力控制的,因此在使用辅助触点时,需要注意电路的正确定义和接线。
4. 多级接触器的联锁接法当需要控制多个电动机或电动机组时,可以采用多级接触器的联锁接法。
多级接触器的联锁接法可以确保各个电动机之间的启动顺序和停止顺序的正确性,防止电动机之间的干扰和冲击。
四、接触器式继电器的应用领域接触器式继电器广泛应用于各个领域,特别是在电力系统和电动机控制方面有重要作用。
继电器与接触器控制的基本电路引言继电器和接触器是常用的电气元件,用于控制电路中的电流流动。
它们在各种自动化系统、电力系统等领域中起着重要的作用。
本文将介绍继电器和接触器的基本原理以及它们在电路控制中的应用。
继电器的基本原理继电器是一种电控制装置,能够使用小电流来控制大电流的流动。
继电器通常由电磁系统、机械系统和电气系统组成。
电磁系统继电器的电磁系统由线圈和铁芯组成。
当线圈通电时,产生的磁场会吸引铁芯,将机械系统连接或断开。
机械系统由机械触点组成,触点通过机械装置与铁芯相连。
当线圈通电时,铁芯受到吸引力,机械触点会发生动作,打开或关闭电路。
电气系统电气系统由常开触点(NO)和常闭触点(NC)组成。
当继电器处于非通电状态时,常开触点闭合,常闭触点断开;当继电器通电时,常开触点断开,常闭触点闭合。
接触器的基本原理接触器与继电器类似,也是一种电控制装置。
接触器通常由电磁系统、机械系统和电气系统组成,但接触器的结构更为复杂。
电磁系统接触器的电磁系统由线圈和铁芯组成。
当线圈通电时,产生的磁场会吸引铁芯,将机械系统连接或断开。
接触器的机械系统由机械触点组成,触点通过机械装置与铁芯相连。
当线圈通电时,铁芯受到吸引力,机械触点会发生动作,打开或关闭电路。
和继电器不同的是,接触器的机械系统可以有多个机械触点,可以实现多个电路的控制。
电气系统接触器的电气系统由多个触点组成,触点通过电气连接与外部电路相连。
接触器的电气系统常用接线方式有串联和并联两种。
继电器和接触器在电路控制中的应用继电器和接触器广泛应用于各种电路控制中,下面将介绍它们在电路控制中常见的应用。
继电器的应用•自动控制:继电器可以实现自动控制功能,通过传感器检测到的信号来控制其他设备的启停。
•电机控制:继电器可以用于电机的启停、正反转等控制。
•照明控制:继电器可以通过光敏传感器或定时器控制照明设备的开启和关闭。
•报警控制:继电器可以用于报警系统的控制,如火灾报警、温度报警等。
接触器和中间继电器控制电动机混合线路工作原理分析
中间继电器和接触器控制电动机连续与点动混合线路的工作原理如下:
首先,我们来看看接触器的工作原理。
接触器是一种通过电磁铁驱动触点闭合和断开来实现电路控制的电器。
当线圈通电后,线圈产生磁场,使铁芯产生吸力,带动触点闭合。
当线圈断电后,铁芯失去吸力,触点就会断开。
因此,接触器可以用于接通和断开电路。
接下来,我们来看看中间继电器的工作原理。
中间继电器是一种控制继电器,它通过线圈的电流强弱来动作。
当线圈通电时,中间继电器会产生磁力,将触点吸合,从而使电路导通。
当线圈断电时,磁力消失,触点断开,电路也随之断开。
在混合线路中,接触器和中间继电器共同作用来控制电动机的连续和点动。
当按下点动按钮时,接触器的线圈通电,触点闭合,电动机开始运转。
同时,中间继电器的线圈也通电,但它的触点并没有闭合,因此电动机不会持续运转。
当松开点动按钮时,接触器的线圈断电,触点断开,电动机停止运转。
而中间继电器的线圈仍然通电,它的触点仍然处于断开状态。
当按下连续按钮时,接触器和中间继电器的线圈都通电。
接触器的触点闭合,电动机开始运转。
同时,中间继电器的触点也闭合,形成一个自锁电路。
这样,即使松开连续按钮,电动机也会继续运转。
总的来说,中间继电器和接触器控制电动机连续与点动混合线路的工作原理是通过接触器和中间继电器的相互作用来控制电动机的
运转状态。
第五章继电接触器控制系统的设计继电接触器控制系统是一种传统的自动控制系统,它通过继电接触器驱动电机和其他设备实现自动化控制。
本文将介绍继电接触器控制系统的设计步骤和注意事项。
一、设计步骤1.需求分析:首先,设计人员需要了解系统的整体需求和功能,包括需要驱动的设备类型、设备数量、控制信号种类等。
同时,需要了解系统的工作环境和使用条件,以便选择合适的继电接触器和配套设备。
2.电路设计:根据需求分析的结果,设计人员可以开始进行电路设计。
通常,继电接触器控制系统的电路包括电源电路、输入电路和输出电路。
电源电路用于为整个系统提供电源供应,输入电路负责接收来自控制信号源的信号,输出电路则控制继电器的工作状态。
3.继电器选型:继电接触器的选型是关键步骤之一,设计人员需要根据控制系统的需求选择合适的继电器。
选择继电器时,需要考虑工作电流、额定电压、最大开关次数和工作温度范围等参数。
4.继电器布置:根据设计的电路和继电器的选型,设计人员可以开始进行继电器的布置。
布置继电器时,需要考虑继电器之间的相互干扰和继电器与其他电路元件之间的布局关系。
同时,需要合理安排继电器的通信线路和控制线路。
5.系统调试:在完成电路设计和继电器布置后,设计人员需要对整个系统进行调试。
调试过程中,设计人员需要逐一检查系统的电路连接、信号传输和继电器工作状态,以确保系统的正常工作。
二、注意事项1.电源供应:继电接触器控制系统通常需要稳定可靠的电源供应。
设计人员需要合理选择和布置电源供应线路,避免电源波动对系统的影响。
2.继电器的散热问题:继电接触器在工作过程中会产生一定的热量,设计人员需要合理设计继电器的散热系统,以确保继电器的长期稳定工作。
3.线路的绝缘和防护:继电器控制系统的线路需要进行绝缘处理和防护措施,以防止电流泄漏和外界干扰。
4.继电器与其他元器件的匹配:在进行继电器控制系统的设计时,设计人员需要根据系统的需求选择合适的电线、保险丝、电容等配套元器件,以确保整个系统的兼容性和稳定性。