SSR分子标记简介
- 格式:docx
- 大小:22.62 KB
- 文档页数:4
ssr分子标记原理SSR分子标记原理引言:SSR分子标记(SSR molecular tagging)是一种用于分析和鉴定生物体内特定分子的技术。
它基于分子生物学和生物化学的原理,通过特定的标记物,可以在细胞、组织或体液中准确地检测和定位目标分子。
本文将介绍SSR分子标记的原理及其在科研和医学领域的应用。
一、SSR分子标记的原理SSR分子标记是一种基于DNA序列多态性的分子标记技术。
它利用了DNA序列中的简单重复序列(simple sequence repeat, SSR),即由1-6个碱基重复组成的核酸序列。
SSR序列在基因组中广泛存在,具有高度变异性和遗传稳定性,因此可以作为DNA分子标记的候选序列。
SSR分子标记的原理可以简单概括为以下几个步骤:1. DNA提取:从样品(如细胞、组织或体液)中提取总DNA。
2. SSR标记物设计:根据目标分子的序列信息,设计特异性引物,引物的两端分别包含互补的SSR序列。
3. PCR扩增:利用PCR技术,使用设计好的引物对DNA进行扩增,扩增产物中包含了目标分子的序列和SSR序列。
4. 电泳分析:将PCR扩增产物进行电泳分析,根据SSR序列的长度变异性,可以将不同样品中的目标分子进行定性和定量分析。
二、SSR分子标记的应用SSR分子标记技术在科研和医学领域具有广泛的应用价值,以下是几个典型的应用案例:1. 遗传多样性研究:SSR分子标记可以用于研究不同物种或不同个体间的遗传多样性。
通过对多个基因座进行SSR分子标记,可以获得物种或个体的遗传背景信息,进而推断种群结构、基因流动和进化关系等。
2. 基因定位和图谱构建:SSR分子标记可以用于构建遗传图谱,帮助研究人员定位和克隆感兴趣的基因。
通过SSR标记物在遗传图谱上的位置,可以确定目标基因的大致区域,为后续的克隆工作提供有力的指导。
3. 疾病诊断和预后评估:SSR分子标记在医学诊断中的应用也日益广泛。
通过对特定基因的SSR序列进行分子标记,可以检测和鉴定与疾病相关的突变或多态性。
ssr分子标记原微卫星DNA又叫简单重复序列,指的是基因组中由1~6个核苷酸组成的基本单位重复多次构成的一段DNA,广泛分布于基因组的不同位置,长度一般在200bp以下。
研究表明,微卫星在真核生物的基因组中的含量非常丰富,而且常常是随机分布于核DNA中。
微卫星中重复单位的数目存在高度变异,这些变异表现为微卫星数目的整倍性变异或重复单位序列中的序列有可能不完全相同,因而造成多个位点的多态性。
如果能够将这些变异揭示出来,就能发现不同的SSR 在不同的种甚至不同个体间的多态性,基于这一想法,人们发展起了SSR标记。
SSR标记又称为sequence tagged microsatellite site,简写为STMS,是目前最常用的微卫星标记之一。
由于基因组中某一特定的微卫星的侧翼序列通常都是保守性较强的单一序列,因而可以将微卫星侧翼的DNA片段克隆、测序,然后根据微卫星的侧翼序列就可以人工合成引物进行PCR扩增,从而将单个微卫星位点扩增出来。
由于单个微卫星位点重复单元在数量上的变异,个体的扩增产物在长度上的变化就产生长度的多态性,这一多态性称为简单序列重复长度多态性(SSLP),每一扩增位点就代表了这一位点的一对等位基因。
由于SSR重复数目变化很大,所以SSR标记能揭示比RFLP高得多的多态性,这就是SSR 标记的原理。
RAPD 技术是建立在PCR (Polymerase Chain Reaction)基础之上的一种可对整个未知序列的基因组进行多态性分析的分子技术。
其以基因组DNA为模板, 以单个人工合成的随机多态核苷酸序列( 通常为10 个碱基对) 为引物, 在热稳定的DNA 聚合酶( Taq 酶) 作用下, 进行PCR 扩增。
扩增产物经琼脂糖或聚丙烯酰胺电泳分离、溴化乙锭染色后,在紫外透视仪上检测多态性。
扩增产物的多态性反映了基因组的多态性。
/////////////////////////////////////////////生物的基因组中,特别是高等生物的基因组中含有大量的重复序列〔14〕,根据重复序列在基因组中的分布形式可将其分为串联重复序列和散布重复序列。
简单重复序列标记(Simple Sequence Repeat,SSR)是一种基于PCR技术的分子标记技术,用于检测DNA序列中的重复序列。
这些重复序列通常由几个到几十个核苷酸组成,并且在基因组中以串联的形式重复出现。
SSR标记的原理是利用PCR技术扩增这些重复序列,并通过凝胶电泳或毛细管电泳检测扩增产物的大小,从而确定不同个体或种群之间的遗传多样性。
SSR标记具有多态性高、重复性好、共显性等优点,因此在遗传学、基因组学、进化生物学和遗传育种等领域得到了广泛应用。
例如,SSR标记可以用于研究物种的遗传多样性、亲缘关系和系统发育,也可以用于基因定位和分子标记辅助育种。
在SSR标记的应用中,通常需要设计特定的引物来扩增特定的重复序列。
这些引物可以通过已知的基因组序列或EST序列来设计,也可以通过生物信息学的方法来预测和设计。
在PCR扩增后,可以通过凝胶电泳或毛细管电泳来分离扩增产物,并通过一些特定的软件来分析扩增产物的大小和数量,从而确定不同个体或种群之间的遗传多样性。
此外,SSR标记还可以用于法医鉴定、亲子鉴定和人类遗传学研究等领域。
例如,通过检测犯罪现场遗留的DNA样本中的SSR标记,可以确定犯罪嫌疑人的身份或亲缘关系。
在人类遗传学研究中,SSR标记可以用于研究人类基因组的遗传多样性和进化历程。
总之,简单重复序列标记是一种重要的分子标记技术,在多个领域得到了广泛应用。
随着技术的不断发展和完善,SSR标记的应用前景将更加广阔。
ssr分子标记技术存在的问题SSR分子标记技术是一种广泛应用于植物遗传研究中的分子标记技术。
它具有高度多态性、遗传稳定性和易于扩增等优点,因此被广泛应用于植物遗传多样性和基因定位等领域。
然而,SSR分子标记技术在应用过程中也存在一些问题,主要包括以下几个方面。
一、样品处理问题SSR分子标记技术需要从植物组织中提取DNA,因此样品处理是影响技术稳定性和可重复性的重要因素。
样品处理不当会导致DNA质量下降,从而影响PCR扩增效果和分析结果。
因此,在样品处理过程中需要注意细节,如避免样品受到污染、避免DNA降解等。
二、PCR扩增问题SSR分子标记技术需要通过PCR扩增来扩增目标序列,因此PCR扩增是影响技术稳定性和可重复性的另一个重要因素。
PCR扩增过程中需要考虑多种因素,如反应体系、扩增条件、引物设计等。
如果PCR扩增条件不合适,会导致扩增效率低下、扩增产物不清晰等问题,从而影响分析结果。
三、数据分析问题SSR分子标记技术需要通过数据分析来解读分析结果,因此数据分析是影响技术稳定性和可重复性的另一个重要因素。
数据分析需要考虑多种因素,如数据质量、数据处理方法、数据统计方法等。
如果数据分析不当,会导致分析结果不准确、分析效率低下等问题,从而影响研究结论的可靠性。
四、标记选择问题SSR分子标记技术需要选择合适的标记来进行研究,因此标记选择是影响技术稳定性和可重复性的另一个重要因素。
标记选择需要考虑多种因素,如标记多态性、标记分布、标记稳定性等。
如果标记选择不当,会导致研究结果不准确、研究效率低下等问题,从而影响研究结论的可靠性。
综上所述,SSR分子标记技术在应用过程中存在一些问题,需要在样品处理、PCR扩增、数据分析和标记选择等方面加以注意。
只有在技术操作规范、数据分析准确、标记选择合理的情况下,才能保证SSR 分子标记技术的稳定性和可重复性,从而为植物遗传研究提供可靠的分子标记技术支持。
玉米品种鉴定技术规程 ssr标记法SSR(Simple Sequence Repeat)标记法是一种用于玉米品种鉴定的技术规程。
以下是关于玉米品种鉴定技术规程 SSR 标记法的一些基本信息:1. SSR 标记的原理:SSR 标记是基于短小简单重复序列的分子标记技术。
这些重复序列在基因组中广泛存在且具有高度多态性。
通过设计特定的引物,可以扩增并检测这些 SSR 标记,从而识别不同品种之间的差异。
2. DNA 提取:从待鉴定的玉米样本中提取高质量的 DNA 是进行 SSR 分析的重要步骤。
通常使用适当的 DNA 提取方法,如 CTAB 法或商业试剂盒。
3. SSR 引物设计:针对玉米基因组中的 SSR 位点,设计特异性的引物对。
这些引物可以根据已发表的玉米 SSR 数据库或通过自行开发来获得。
4. PCR 扩增:使用设计的 SSR 引物对,对提取的 DNA 进行 PCR 扩增。
PCR 反应条件可以根据引物的特性和设备要求进行优化。
5. 电泳和凝胶分析:扩增产物通过电泳在琼脂糖凝胶或聚丙烯酰胺凝胶上进行分离。
根据 SSR 标记的大小差异,可以观察到不同的电泳条带。
6. 数据分析:对电泳结果进行分析,记录每个品种的 SSR 标记图谱。
通过比较不同品种之间的图谱差异,可以鉴定出品种的独特特征。
7. 品种鉴定:根据 SSR 标记的多态性和品种特有的图谱模式,可以对玉米品种进行准确的鉴定和区分。
需要注意的是,SSR 标记法需要专业的实验室设备和技术操作,同时也需要对玉米基因组和 SSR 标记的相关知识有一定的了解。
在进行品种鉴定时,建议遵循相关的标准操作程序和实验室安全规范。
基于SSR分子标记的大麻品种鉴别取样策略1. 背景介绍随着大麻合法化的趋势不断增加,对大麻品种的鉴别和分析需求也日益迫切。
大麻品种的鉴别对于监管、种植和市场销售具有重要意义。
传统的大麻品种鉴别方法主要依赖于形态学和生理学特征,这些特征容易受环境影响而产生变异,因此有必要开发一种准确可靠的大麻品种鉴别方法。
2. SSR分子标记技术介绍SSR(Simple Sequence Repeat)是一种分子标记技术,它基于DNA序列中短且重复的核苷酸单元。
SSR分子标记具有高度多态性、遗传稳定性强、易于扩增和分析等优点,因此在植物遗传多样性研究和品种鉴别中得到了广泛应用。
3. 大麻品种鉴别取样策略(1)样品选择在进行大麻品种鉴别前,需要选择代表性的大麻品种样本作为研究对象。
根据大麻的遗传背景和种质资源情况,可以从种植地点、种植时间等方面进行合理的样品选择。
(2) DNA提取使用适当的DNA提取方法提取大麻样品中的DNA,保证提取的DNA质量和纯度满足后续的分子标记分析需求。
(3) SSR分子标记扩增通过PCR技术,使用SSR引物对大麻DNA进行扩增。
PCR扩增条件的优化对于获得清晰、稳定的扩增产品至关重要。
(4)分子标记分析将扩增的SSR产物进行琼脂糖凝胶电泳,通过观察不同品种之间的DNA条带长度和数量差异来进行品种鉴别分析。
4. 基于SSR分子标记的大麻品种鉴别取样策略的优势(1)准确性:SSR分子标记具有很高的多态性,可以准确鉴别不同大麻品种。
(2)重复性强:通过科学的实验设计和大量重复实验,可以获得稳定的鉴别结果。
(3)适用性广:SSR分子标记技术适用于不同类型的大麻品种,具有较强的普适性。
5. 鉴别结果的应用通过以上SSR分子标记分析,可以准确鉴别不同大麻品种。
这些鉴别结果可以为政府监管部门提供大麻品种鉴别的科学依据,也为大麻种植者和市场销售者提供了准确的品种信息,促进了大麻产业的规范发展。
6. 结语基于SSR分子标记的大麻品种鉴别取样策略,是一种准确可靠的大麻品种鉴别方法。
微卫星DNA标记技术及其在遗传多样性研究中的应用摘要微卫星DNA的高突变率、中性、共显性及其在真核基因组中的普遍性,使其成为居群遗传学研究、种质资源鉴定、亲缘关系分析和图谱构建的优越的分子标记。
本研究系统介绍了微卫星DNA在结构和功能上的特点,并对微卫星DNA标记技术应用的遗传学机理和一般方法进行了扼要的阐述。
另外,本研究还探讨了微卫星DNA标记技术在遗传多样性研究中的应用现状,并进一步提出其发展前景。
关键词:微卫星DNA;微卫星DNA标记;遗传多样性大量重复序列的存在是真核生物基因组的主要特点之一,而且这些重复序列的拷贝数可高达百万份以上。
真核生物的基因组中,重复序列占有很大比重(>50%)。
按照重复序列在染色体上的分布方式,分为散布重复和串联重复(VNTR)两种类型。
散布重复序列的拷贝数很多,在重复单位之间彼此常有序列的变化,难以用做分子标记。
串联重复序列根据重复单元数目的大小又分为卫星序列(satellites)、小卫星序列(mini-satellites)和微卫星序列(microsatellites)3种类型。
其中,卫星序列的重复单元大,一般分布在染色体的异染色质区,采用分子标记系统来揭示其多态性有一定的困难;小卫星序列主要存在于染色体近端粒处,通常以15~75个核苷酸为核心序列,长度从几十到几千个碱基不等;微卫星序列一般较短,属于以1~6个核苷酸为基本单元的简单串联重复。
微卫星DNA是真核生物基因组重复序列中的主要组成部分。
微卫星DNA也称简单串联重复序列(SSRs)或简单串联重复序列多态性(STRP)。
这些位点由非常短的串联重复DNA 片段(1-5个碱基)组成。
微卫星DNA 最早是在人类基因组研究中发现的,它极其丰富,分布在整个基因组中[1] 。
人类基因组最普遍的微卫星是那些含有A、AC、AAAN、AAN 或AG(这里N 代表G、C或T)的序列。
这5组重复序列大约占到人类基因组微卫星总量的75%。
SSR 分子标记引物序列书写格式探究一、引言在分子生物学和遗传学领域,简单重复序列(Simple Sequence Repeats, SSR)被广泛应用于分子标记和遗传多样性研究。
而作为SSR分子标记的引物序列书写格式对于实验设计和数据分析具有重要意义。
本文将对SSR分子标记引物序列书写格式进行全面探讨,旨在帮助读者更深入地理解这一主题。
二、SSR 分子标记引物序列书写格式概述1. SSR分子标记的定义和作用在揭示DNA序列多样性、建立分子遗传连锁图谱、确定亲缘关系等方面,SSR分子标记具有重要应用价值。
它是由重复单元组成的DNA片段,重复单元通常包括二核苷酸甚至多核苷酸序列。
SSR分子标记通过PCR扩增和电泳分析可用于研究种群遗传结构、构建遗传图谱等。
2. 引物序列书写格式的重要性引物序列是进行PCR扩增的关键,其书写格式的准确与否直接影响着实验结果的可靠性。
了解和掌握SSR引物序列的书写格式至关重要。
三、SSR引物序列书写格式详解1. 引物序列的组成SSR引物序列通常由引物头部、SSR区域和引物尾部三部分组成。
其中,SSR区域是包含了重复单元的片段,引物头部和引物尾部则用于引导PCR扩增。
在书写SSR引物序列时,需要明确标注这三个部分的具体序列。
2. 引物序列的长度和序列特点根据SSR区域重复单元的长度和形式,引物序列的长度和特点会有所不同。
对于不同长度的SSR重复单元,引物序列的设计需考虑到引物长度的合理性以及引物串联的可能性。
3. 引物序列书写格式规范在书写SSR引物序列时,需要遵循一定的规范和格式,确保信息的准确性和可读性。
通常,引物序列的书写包括引物名称、引物序列、引物位置等内容,同时还需要标注引物头部和引物尾部的具体序列。
四、SSR引物序列书写格式的个人观点和理解在我的看来,了解和掌握SSR引物序列书写格式对于进行分子标记研究至关重要。
准确且规范的引物序列书写格式有助于确保实验结果的可靠性,帮助研究人员更好地开展遗传多样性和亲缘关系等方面的研究。
枣品种鉴定技术规程ssr分子标记法一、引言枣是中国传统的重要经济作物之一,具有丰富的营养价值和药用价值。
枣的品种鉴定对于枣的种质资源保护、品种选育和市场推广具有重要意义。
随着生物技术的发展,分子标记技术成为枣品种鉴定的重要手段之一。
其中,ssr分子标记法在枣品种鉴定中具有广泛应用和较高的准确性。
本文将详细介绍ssr分子标记法在枣品种鉴定中的技术规程。
二、ssr分子标记法概述ssr(Simple Sequence Repeat)又称微卫星,是DNA序列中重复出现的简单序列。
ssr分子标记法是一种基于PCR扩增的分子标记技术,通过扩增和分析ssr位点上的DNA序列差异,实现对枣品种的鉴定和遗传多样性分析。
ssr标记具有高度重复性、多态性强、稳定可靠等特点,被广泛应用于植物基因组研究和品种鉴定。
三、ssr分子标记法的实验步骤为了准确地进行枣品种鉴定,需要按照以下步骤进行实验:1. DNA提取•从枣叶片或嫩枝中提取总DNA。
•使用CTAB法、高盐法等常用的DNA提取方法。
•确保提取的DNA质量和纯度,以保证后续实验的准确性。
2. ssr引物设计和合成•根据已知的ssr序列进行引物设计。
•引物应具有良好的特异性和扩增性。
•可以通过商业合成或实验室自行合成。
3. PCR扩增•根据ssr引物序列设计PCR扩增反应体系。
•设置合适的PCR扩增程序和条件。
•使用阳性和阴性对照进行扩增反应的验证。
4. 电泳分析•将PCR扩增产物进行电泳分析。
•选择合适的琼脂糖凝胶和电泳条件。
•根据扩增产物的大小和带型特征进行品种鉴定。
四、ssr分子标记法的优势和应用ssr分子标记法在枣品种鉴定中具有以下优势和应用:1. 高度重复性ssr序列在基因组中高度重复,因此可以通过ssr分子标记法对枣品种进行高度重复性的鉴定。
2. 多态性强ssr序列具有多态性,不同品种之间的ssr位点会出现不同的DNA序列差异,因此可以通过ssr分子标记法对枣品种进行多态性鉴定。
小麦品种纯度鉴定ssr分子标记法
小麦品种纯度鉴定是指通过分子标记技术来确定小麦品种的纯度和遗传背景。
SSR(Simple Sequence Repeat)分子标记法是一种常用的分子标记技术,通过检测DNA中的微卫星序列来进行分析。
下面我会从多个角度来回答这个问题。
首先,SSR分子标记法的原理是利用PCR扩增技朧,通过特定引物扩增目标微卫星序列,然后利用聚丙烯酰胺凝胶电泳等方法对扩增产物进行分离和检测。
这种方法能够检测DNA序列中的微卫星重复序列,因为不同品种的小麦在微卫星序列上会存在差异,通过分析这些差异可以确定品种的纯度和遗传背景。
其次,利用SSR分子标记法进行小麦品种纯度鉴定的过程一般包括DNA提取、PCR扩增、电泳分离和数据分析等步骤。
首先是DNA 提取,从待测小麦品种的叶片或种子中提取DNA样品;然后是PCR 扩增,使用特定的微卫星引物对DNA样品进行PCR扩增,产生特定长度的DNA片段;接着是电泳分离,将PCR产物经过聚丙烯酰胺凝胶电泳,根据片段大小进行分离;最后是数据分析,根据电泳图谱分析PCR产物的特征,来确定小麦品种的纯度和遗传背景。
此外,SSR分子标记法在小麦品种纯度鉴定中具有高度的灵敏性和重复性,能够对小麦品种进行准确的鉴定和分类。
通过对小麦品种进行SSR分子标记分析,可以帮助农业科研人员和育种者确定小麦品种的亲缘关系、纯度和遗传特征,为小麦品种改良和种质资源保护提供重要依据。
综上所述,SSR分子标记法在小麦品种纯度鉴定中发挥着重要作用,通过对小麦品种的DNA序列进行分析,可以准确地确定其纯度和遗传背景,为小麦育种和种质资源管理提供科学依据。
SSR简单序列重复标记(Simple sequence repeat, 简称SSR标记),也叫微卫星序列重复,是由一类由几个核苷酸(1-5个)为重复单位组成的长达几十个核苷酸的重复序列,长度较短,广泛分布在染色体上。
由于重复单位的次数的不同或重复程度的不完全相同,造成了SSR长度的高度变异性,由此而产生SSR标记或SSLP标记。
虽然SSR在基因组上的位置不尽相同,但是其两端序列多是保守的单拷贝序列,因此可以用微卫星区域特定顺序设计成对引物,通过PCR技术,经聚丙烯酰胺凝胶电泳,即可显示SSR位点在不同个体间的多态性。
优点:(1)标记数量丰富,具有较多的等位变异,广泛分布于各条染色体上;(2)是共显性标记,呈孟德尔遗传;(3)技术重复性好,易于操作,结果可靠。
缺点:开发此类标记需要预先得知标记两端的序列信息,而且引物合成费用较高。
操作程序:取叶片→磨样→提取DNA→PCR扩增→电泳检测→染色→读带标记1、DNA提取按照Doyle和Dickson(1987)CTAB法(`Cetyl triethyl ammonium bromide)并略加改进的程序进行,具体步骤如下:①成熟期取叶片加液氮研磨成粉末状,转入1.5ml离心管中,-20℃冰箱保存;②加入600ul 65℃的2×CTAB混匀并置于65℃水浴中保温30~60分钟;③取出,冷却,上下摇匀后,加入600微升24:1的氯仿异戊醇;④12000转/分钟离心10分钟,取上清液于另一个1.5ml的离心管中;⑤加异丙醇,12000转/分钟离心10分钟,倒掉上清液;⑥干后用100%的洒精清洗,干后加适量TE2、PCR扩增模板DNA的浓度大约25ng/ul,扩增反应体系为20ul。
具体如下:Sterile ddH2O 11ulPCR Buffer 3uldNTP-mix 0.5ulPrimer1 1ulPrimer2 1ulTaq polymerase 0.5ul(2U/μL)DNA 3ulPCR扩增程序为:(2h30min)①预变性:94℃,5分钟;②变性:94℃,40秒;③退火:55℃40秒;④延伸:72℃,1分钟;⑤循环:从2到4共38个循环;⑥72℃下最后延伸5分钟;4℃5min,扩增产物置于4℃的冰箱保存。
小麦品种纯度鉴定ssr分子标记法
小麦品种纯度鉴定是指通过分子标记技术对小麦品种的遗传纯
度进行鉴定。
SSR(Simple Sequence Repeat)分子标记法是一种常
用的分子标记技朮,也称为微卫星分子标记。
下面我将从几个方面
来详细介绍小麦品种纯度鉴定SSR分子标记法。
首先,SSR分子标记法的原理是利用DNA序列中的微卫星序列
进行分子标记。
微卫星是DNA序列中短重复的核苷酸序列,它们在
基因组中存在广泛且具有高度多态性。
通过PCR扩增和电泳分析,
可以检测微卫星位点的多态性,从而对不同小麦品种进行鉴定。
其次,小麦品种纯度鉴定SSR分子标记法的步骤包括DNA提取、PCR扩增、电泳分析和数据解读。
首先是DNA提取,从不同小麦品
种的叶片或种子中提取DNA样品;然后进行PCR扩增,利用特定的
微卫星引物对DNA进行扩增,得到特定微卫星位点的DNA片段;接
下来是电泳分析,将PCR产物进行电泳分离,根据片段大小进行鉴定;最后是数据解读,根据电泳图谱分析不同小麦品种的微卫星位
点多态性,从而判断它们的遗传纯度。
另外,SSR分子标记法具有高度多态性、重复性强、稳定可靠
等特点,可以对小麦品种进行高效的鉴定。
通过分析不同小麦品种
的微卫星位点多态性,可以快速、准确地鉴定小麦品种的遗传纯度,为小麦育种和品种纯度管理提供重要的技术支持。
综上所述,小麦品种纯度鉴定SSR分子标记法是一种有效的分
子标记技朮,通过对小麦品种的微卫星位点多态性进行分析,可以
实现对小麦品种遗传纯度的准确鉴定,为小麦育种和种质资源管理
提供重要的技术手段。
微卫星DNA标记技术及其在遗传多样性研究中的应用摘要微卫星DNA的高突变率、中性、共显性及其在真核基因组中的普遍性,使其成为居群遗传学研究、种质资源鉴定、亲缘关系分析和图谱构建的优越的分子标记。
本研究系统介绍了微卫星DNA在结构和功能上的特点,并对微卫星DNA标记技术应用的遗传学机理和一般方法进行了扼要的阐述。
另外,本研究还探讨了微卫星DNA标记技术在遗传多样性研究中的应用现状,并进一步提出其发展前景。
关键词:微卫星DNA;微卫星DNA标记;遗传多样性大量重复序列的存在是真核生物基因组的主要特点之一,而且这些重复序列的拷贝数可高达百万份以上。
真核生物的基因组中,重复序列占有很大比重(>50%)。
按照重复序列在染色体上的分布方式,分为散布重复和串联重复(VNTR)两种类型。
散布重复序列的拷贝数很多,在重复单位之间彼此常有序列的变化,难以用做分子标记。
串联重复序列根据重复单元数目的大小又分为卫星序列(satellites)、小卫星序列(mini-satellites)和微卫星序列(microsatellites)3种类型。
其中,卫星序列的重复单元大,一般分布在染色体的异染色质区,采用分子标记系统来揭示其多态性有一定的困难;小卫星序列主要存在于染色体近端粒处,通常以15~75个核苷酸为核心序列,长度从几十到几千个碱基不等;微卫星序列一般较短,属于以1~6个核苷酸为基本单元的简单串联重复。
微卫星DNA是真核生物基因组重复序列中的主要组成部分。
微卫星DNA也称简单串联重复序列(SSRs)或简单串联重复序列多态性(STRP)。
这些位点由非常短的串联重复DNA 片段(1-5个碱基)组成。
微卫星DNA 最早是在人类基因组研究中发现的,它极其丰富,分布在整个基因组中[1] 。
人类基因组最普遍的微卫星是那些含有A、AC、AAAN、AAN 或AG(这里N 代表G、C或T)的序列。
这5组重复序列大约占到人类基因组微卫星总量的75%。
微卫星DNA 序列在大多数的其它动、植物基因组中也先后被发现,并且通过聚合酶链式反应可以确定其类型[2] 。
(AT)n和(ATT)n 是首先于大豆中发现的在不同的株系中长度有所不同的重复序列,它们也是第一个被定位的植物微卫星座位。
Wang等[3]发现微卫星序列中所有的单、双和四核苷酸重复序列都分布在DNA非编码区,而含G-C 碱基对的三核苷酸重复序列有57%位于编码区。
微卫星重复序列在植物中出现的几率比动物中少得多。
在植物中,约29kb中有20bp的微卫星序列[4],例如鹰嘴豆中(TAA)n、(GA)n和(CA)n 序列在平均60kb的长度中出现于12000个位点上[5];而动物中,约每6kb中就有20bp的微卫星重复序列。
另外,研究还发现植物中最丰富的微卫星是(A)n,其次是(AT)n,再次是(GA)n。
Weber[6]将微卫星分为3类:完全重复(无间隔)、不完全重复(有非重复单位的碱基间隔)和复合重复(2个或更多重复单位彼此毗邻连续出现)。
这些小的、串联排列的重复序列经常是通过核苷酸链的滑动错配或者其他未知的过程来改变它们的长度,从而导致微卫星在数量上的差异[7]。
微卫星的突变率高:每代每个配子的每个位点有2.5×10-5~1×10-2突变,因此造成了它们的多态性。
但微卫星周围的单拷贝序列一般不受其影响。
Davierwala等对水稻及其近缘种利用(GATA)n和(AC)n微卫星两侧的序列合成的引物进行PCR扩增,再通过克隆、测序获得了大小不等的8个等位基因。
测序分析的结果表明,不同等位基因的大小变异是由于微卫星重复数目的变异和微卫星两侧区域的序列的变异。
尽管目前对这些重复序列的功能和起源还不清楚,但许多研究已经证明,重复序列可以作为种或基因组水平的遗传标记,是分子水平上研究遗传多样性的一个有力工具。
微卫星序列的重复单位小,而且这些重复单位的序列差异和数目变化能够形成丰富的多态性,因此得到了广泛的应用。
微卫星通常是复等位的,代表每个微卫星位点的等位基因数目高度可变。
微卫星寡聚核苷酸的重复次数在同一物种的不同基因型间差异很大。
另一方面,在每个微卫星DNA两端的序列多是相对保守的单拷贝序列,尤其在亲缘关系相近的物种间是保守的,因此可根据两端的序列设计一对特异的引物,然后利用PCR扩增每个位点的微卫星序列,经电泳比较扩增产物的长短变化,即可显示不同基因型的个体在每个微卫星DNA位点的多态性。
进一步研究还发现,微卫星DNA是中性的,而且微卫星DNA标记呈共显性的孟德尔式遗传。
它具有比其它分子标记(如等位酶、RFLP、RAPD等)更多的可检测等位基因,能够提供更细致的基因变化分析范围。
该方法在居群遗传学研究中表现出很大的潜力。
微卫星DNA具有高度多态性,同一遗传位点数目变化很大,并能在群体中形成多达几十种的等位基因,这是其他遗传标记所不能比拟的;此外,PCR技术的利用使微卫星标记技术实现操作自动化。
微卫星作为遗传标记已使人类基因组的遗传制图和连锁分析发生了革命性的变化。
至今,所建立的遗传图谱中已含有6000多个以微卫星DNA为主体的遗传标记,其平均分辨率为0.7cmol/L(里摩尔根),即2个位点之间有0.7%的几率可以重组。
目前,微卫星标记系统是基因定位中研究最多的标记系统。
2微卫星标记DNA技术的实践方法及发展通过PCR扩增并使用凝胶电泳分离产生大量含有微卫星DNA片段的方法有3种:(1)用在3’端或5’端被放射性标记的微卫星DNA引物做PCR;(2)用微卫星DNA两端的保守序列做PCR;(3)用被放射性标记的微卫星DNA引物和RAPD随机引物共同扩增含微卫星DNA 的序列和随机序列。
其中第2种方法最为普遍,它一般可分成4个步骤。
①微卫星序列通常有2种途径:一是从基因组文库中获得含有微卫星的阳性克隆;一是通过检索Genbank、EMBL 和DDBJ等DNA序列数据库,从互联网上获得含有微卫星的序列。
前者获得微卫星DNA标记需要建立、筛选基因组文库和克隆测序等一系列实验,消耗大,工作量也大。
而通过后者可以直接快速的获得微卫星标记,是对上一种途径的有效补充。
②微卫星引物微卫星两侧的序列对于同一物种高度保守,因此可以使用与两侧保守的DNA 序列相互补的方式设计特定的寡聚核苷酸引物。
实验室中通常采用两种方式得到所需微卫星引物:可以通过检索所研究物种GeneBank等数据库查找带简单重复的DNA序列,用Primer0.5及MacVector 6.0 等软件设计引物;另外,也可以直接应用若干已发表的微卫星标记引物。
在基因组内具有高度专一性的微卫星引物一般为18-24个核苷酸,(G+C)% 含量接近50%-60%(Tm值为60℃左右),退火温度常在55℃-72℃下进行。
研究表明提高退火温度可以增加引物与模板结合的特异性。
特别在最初几次循环中采用严谨的退火温度,有助于PCR特异性扩增。
其次,为了避免引物内二级结构的产生及某个核苷酸的连续出现,3’末端最好富含GC。
③微卫星PCR扩增由于是特异性扩增,所以其重现性和稳定性相对较好。
但是随着每对引物(G+C)%含量的不同和扩增片段长度的不同,与每对引物相对应的合适的扩增条件也不同。
通常采用改变退火温度、缓冲液中Mg2+ 浓度及循环数等来获得清晰可靠的条带。
④微卫星扩增产物检测微卫星经过PCR扩增所得产物在100~300bps之间,而且基因型间的差异仅为几个bps。
因此一般采用3种方法进行分离:(1)高浓度(3%-4%)的琼脂糖凝胶电泳,利用溴化乙锭染色;(2)非变性聚丙烯酰胺凝胶电泳,利用银染法来检测,分辨率较高;(3)将PCR产物进行荧光标记(如FAM、TET、HEX 等) ,然后经高温变性,在PE Applied Biosystems 310 等遗传分析仪上利用毛细管电泳分离,并通过GeneScan和Geno Typer 等软件进行分析。
3 微卫星DNA标记在遗传多样性研究中的应用保护生物多样性的核心内容就是保护生物的遗传多样性。
遗传多样性是一个需要用种、变种、亚种或品种的遗传变异来衡量其内部变异性的概念。
遗传多样性为物种和个体的适应及进化提供原材料。
遗传多样性的保护实质上就是在基因和基因组水平上的保护。
如果动植物的遗传多样性得不到应有的保护,一个物种的灭绝就意味着将有难以数计的遗传多样性的消失。
伴着人类对自然资源的开发利用,自然生态系统被大面积破坏,加之环境污染等,使得物种灭绝的速度加快。
物种多样性是人类赖以生存和发展的基础,评估物种受威胁程度以及是否已摆脱受威胁的状态必须建立在遗传多样性研究的基础上。
建立濒危物种有效保护策略的一个首要条件就是在未受到广泛干扰前获得有关其遗传结构的知识。
DNA是生物体内的遗传物质,因而它能更加直接的反映群体内及群体间的相关性。
利用DNA分子标记技术可以有助于从本质上揭示物种遗传变异及其变异规律,预测物种的命运,从而制定相应的管理措施。
Wyman和White于1980年提出了DNA 指纹的概念,自此,DNA 指纹分析成为遗传分子标记中的主要方法。
而微卫星DNA标记技术是DNA指纹技术中极具潜力的分子标记,是目前最为先进的遗传标记系统之一。
同时,对于植物种以下水平的研究,一方面要了解其中的遗传多样性水平和居群间的相互关系,另一方面还要统计分析居群的遗传结构、等位基因频率以及居群间的遗传分化等。
因此,必须选择灵敏的分子标记,从而能够提供足够多的遗传信息,更重要的是所获得的信息要重复性好、可比性高、稳定可靠,且结果便于分析。
微卫星DNA标记即是符合了这些要求的分子标记之一。
由于微卫星DNA在1个位点上重复单位的数量在居群内和居群间可以产生有意义的改变,所以微卫星DNA标记技术受到居群遗传学家的普遍关注。
在缺乏其它自然变异的特征时,微卫星等位基因频率的数据可以用来探讨解决亲缘关系、同源概率和居群结构等问题。
微卫星标记在遗传多样性研究中,特别是在居群遗传学中的广泛使用已经形成了一个较为完整的体系。
然而对于微卫星遗传分化的量化方法目前具有争议。
在遗传多样性研究中通常使用统计学方法如遗传距离、聚类分析、PIC值、基因多样性等来做进一步分析和讨论。
同时,为了提高对微卫星DNA标记量化分析的效率,还可以采用多对引物反应或多次点样的办法。
参考文献:1 TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J].Nucleic Acid Research,1989,17;6 463-6 4712 HAMADA H,PETRINO M G,KAKUNAGA T.A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]A.,1982,79:6 465-6 4693WANG Z,WEBER J L,ZHONG G,et al .Survey of plant short tandem DNA repeats [J].Nature ,1994,359:794-8014 MORGANTE M,OLIVIERI A M.PCR-amplified microsatellites as markers in plant genetics [J].Plant J.,1993,3:175-1825 HUETTEL B,WINTER P,WEISING K,et al.Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.)[J].Genome,1999,42:1-86 WEBER J rmation of human (dC-dA)n(dG-dT)n polymorphisms [J].Genomics.,1990,7:524-5307 LEVINSON G,GUTMAN G A.Slipped-strand mispairing :a major mechanism for DNA sequence evolution[J].Mol.Biol.Evol.,1987,4:203-221参考文献:[1]Grodzicker T,Williams J,Sharp P,et al.Physical mapping of temperature -sensitive mutations of adenoviruses[J].Cold Spring Harb Symp Quant Biol,1975,39(l):439-446.[2]Williams J,Kubelik A,Livak J,et al.DNA polymorphisms amplified by arbitrary primer sare useful as genetic markers[J].Nucleic Acid Research,1990,18(22):6531一6535.[3]Zabeau M,Vos P.Selective restriction fragment amplification: A general method for DNA fingerprints [J] .European Patent Application,1993(13):1059一1065.[4]Edward A,Civitello A,Hammond H A,et al.DNA typing and genetic mapping with trimeric tandem repeats[J]·Am Hum Genet,1991(49):746一756.。