6-湍流预混火焰讲解
- 格式:ppt
- 大小:2.23 MB
- 文档页数:30
第六章 层流预混火焰传播§6-1 火焰速度和火焰结构一维层流火焰在预混燃料-氧化剂混合物中传播是最简单的燃烧现象之一,在此火焰中,化学动力学以及能量和组分扩散输运起重要作用。
通过守恒方程和状态方程可以导出Rankine-Hugoniot 曲线。
该曲线把在一维层流预混火焰中未燃气和已燃气状态联系起来。
已燃气体位于Rankine-Hugoniot 曲线下分支(缓燃),并相应于未燃气体状态Rayleigh 线与具有适当反应热的Rankine-Hugoniot 曲线交点L ,如图6.1-6.2中所示。
图6.1 层流预混火焰坐标系图6.2 一维燃烧波的Rankine-Hugoniot 曲线和Rayleigh 线Rayleigh 线的斜率与相对于未燃气体的波的传播速度,即层流火焰速度有关。
22)()/(/u u u A mdv dP ρ−=−=& ==)(u u S u 层流火焰速度=)/()/1(dv dP u ρ−由于缓燃Rayleigh 线斜率比爆震Rayleigh 线斜率小得多,所以缓燃速度比爆震速度小得多。
虽然守恒方程和状态方程提供了缓燃的未燃气体和已燃状态之间的关系,但不能唯一确定层流火焰速度u S 。
为了确定u S ,必须将守恒方程通过缓燃波积分。
由于在第5章中推导的方程是非线性耦合微分方程,其准确解只有通过数值积分才能获得。
它需要很大的计算资源。
为了考察层流火焰的某些特征(如火焰速度和厚度)以及这些特征与燃烧参数如燃料类型、化学配比、压力及未燃气体的温度的关系,对方程组进行了简化,以便能分析求解。
要得到简化的模型,需要引入一系列的假设。
我们从考察参考系建立在火焰上的层流火焰结构的某些方面入手。
如前所述,这些计算是针对等压过程进行的。
但是对一维缓燃的Rankine-Hugoniot 曲线,如图6.2所示,已燃气的压力小于未燃气的压力。
现在我们需要考察压力减少的数值是否小到可以忽略的程度。