2.3湍流与燃烧的相互作用解析
- 格式:ppt
- 大小:845.50 KB
- 文档页数:27
加力燃烧室湍流两相流动与燃烧的数值模拟的开题报告1. 研究背景和意义随着发动机性能的不断发展和提高,越来越多的发动机需要使用高压燃烧技术,其中加力燃烧室是一种常见的应用。
在加力燃烧室中,高温高压气体加速进入燃烧室,与燃料相混合后进行燃烧反应。
加力燃烧室的工作过程受到许多因素的影响,如两相流动的湍流流动和燃烧。
因此,研究加力燃烧室的湍流流动和燃烧过程,对于提高发动机的工作效率和性能具有重要意义。
2. 研究现状目前,对于加力燃烧室的湍流流动和燃烧过程的研究主要是通过计算流体力学(CFD)数值模拟来实现的。
在湍流流动方面,常用的模拟方法包括Reynolds平均Navier-Stokes方程(RANS)模型、无网格方法以及直接数值模拟(DNS)。
在燃烧方面,主要研究化学反应机理和燃烧模型。
然而,由于加力燃烧室的复杂性和计算量的限制,目前的数值模拟方法还存在一些局限,如预测不准确和计算时间长等问题。
3. 研究内容和方法本文将采用CFD数值模拟方法,对加力燃烧室的湍流流动和燃烧过程进行研究。
具体研究内容包括:(1)探究加力燃烧室中两相流动的特征和运动状态,建立相应的数学模型。
(2)应用RANS模型和无网格方法,分析加力燃烧室中的湍流流动特性,并分析其对燃烧过程的影响。
(3)采用化学反应机理和燃烧模型,模拟燃烧反应的过程,分析燃烧产物的形成及其在燃烧室中的分布和作用过程。
(4)通过模拟结果和实验数据的对比,验证所建立的数学模型的准确性和可靠性。
4. 预期成果和创新点本文的预期成果包括:(1)建立加力燃烧室湍流两相流动和燃烧的数学模型,并对其进行数值模拟计算。
(2)深入理解加力燃烧室的流动和燃烧特性,揭示其内在机理。
(3)验证所建立的数学模型的准确性和可靠性,并提出改进意见。
本文的创新点在于:(1)针对加力燃烧室的湍流流动和燃烧过程进行了全面系统的研究和探讨,为加力燃烧室的设计和优化提供了理论支持。
(2)采用多种数值模拟方法和化学反应机理,对加力燃烧室的流动和燃烧过程进行了深入分析和研究,为燃烧理论的应用和发展提供了新思路。
湍流燃烧及其数值模拟研究1. 湍流燃烧1.1湍流燃烧基本概念当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。
当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。
湍流燃烧是指湍流流动中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。
湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。
湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。
小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。
但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。
大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。
当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。
燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。
1.2湍流燃烧分类湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。
在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。
上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。
部分预混燃烧可出现在下列情形中叫:(1)在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2)当预混火焰前缘穿过非均匀的混气时;(3)射流非预混火焰发生抬举,其根部是一个典型的部分预混火焰。
这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。
在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响.湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容.湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与化学动力参数之间的耦合机理等问题。
燃烧机理分析林树军浙江温岭燃烧过程高速摄影1燃料和空气混合气缸混合气残余废气过程湍流火焰燃气混合物燃料空气点火TDC@1430r/min&部分负荷Lamberda=1.30喷油角度为30CRA BTC出现火焰达到离火花塞最远的气缸壁理论温度最高点燃烧阶段划分火焰高速传播期火焰传播火焰扩散期早期火焰传播火焰终止火花点燃2燃烧机理解释内燃机的燃烧过程是湍流燃烧,而湍流燃烧是一种极其复杂的带化学反应的流动现象,湍流与燃烧的相互作用涉及许多因素,流动参数与化学动力学参数之间的耦合的机理极其复杂,用数值模拟方法分析和预测湍流燃烧现象的关键问题是正确模拟平均化学反应率,即燃料的湍流燃烧速率。
3燃烧湍流模型Eddy Break up(涡团破碎模型)Spalding的涡团破碎模型,其基本思想是:对预燃火焰、湍流燃烧区中的已燃气体和未燃气体都是以大小不等并作随机运动的涡团形式存在。
化学反应在这两种涡团的交界面上发生。
化学反应的速率取决于未燃气体涡团在湍动能作用下破碎成更小的涡团的速率,而此破碎速率正比于湍流脉动动能k的耗散率,其基本表达方式如下:该模型是AVL公司fire软件里面计算燃烧的基础计算模型。
4缸内传热模型5内燃机的传热既是与燃烧现象密切耦合的一个子过程,又是整个燃烧循环模拟的一个重要环节。
然而,内燃机的传热问题又被认为热问题中最复杂的一个,这是因为由于内燃机工作过程强烈非定温度变化的高度瞬变性,以致在毫秒量级的时间内,燃烧室表面的热流量从零变化到10MW/m2,同时温度和热流的空变化也非常剧烈。
在1cm 的位置上,热流峰值相差可达5MW/m2。
一般而言,发动机的传热计算包括3个方面:(1)工质与燃烧室热量的交换(包括对流和辐射两种方式);(2)燃烧室壁内部的热传导;(3)燃烧室外壁与冷却对流和沸腾传热。
对于内燃机燃烧过程来说,主要考虑的第一项,因而对于内燃机传热模型方面主要考虑两个方面:1、工质与壁面之间的对流换热模型,2、是辐射换热模型。
湍流两相流动有燃烧颗粒相概率密度函数输运方程理论燃烧流动的双相流动是以燃烧的颗粒为背景而构成的系统,它将传输,流动和反应等性质结合在一起,并表现出明显的特色。
一般来说,燃烧颗粒输运方程理论可以用于分析燃烧颗粒两相流动的影响。
一、燃烧粒子概率密度函数燃烧粒子概率密度函数是用来描述燃烧颗粒中不同尺度的分布的一种模型。
主要考虑的内容包括粒子的放散类型,形状,尺寸,总体燃烧特性等。
二、燃烧粒子输运方程理论燃烧粒子输运方程学一般用来描述燃烧流体中燃烧颗粒的运动。
根据不同的应用场景,可以采用气体拖动燃烧颗粒形成的湍流双相流动特征,也可以采用火焰传播而形成的只有燃烧颗粒的双相流动。
在统一的框架下,将对流-扩散运动以及重力以及燃烧这几种不同的热力学和力学效应耦合在一起,从而实现对燃烧流体中不同尺度的运动的模拟和表征。
三、热力学和动力学特性热力学和动力学特性指的是燃烧颗粒在不同温度,压力,燃料浓度等条件下的物性。
例如,随着温度的升高,燃烧颗粒的密度函数会发生变化;燃烧颗粒的速度等也会随着温度而变化。
此外,燃烧颗粒还与其他物质混合时,会有混合效应,进而影响流体的流动特性。
四、多尺度模型在热力学和动力学上,多尺度模型也被用于描述燃烧双相流动中的多尺度液滴特性。
通过多尺度模型可以更加准确地模拟具有湍流复杂性的燃烧双相流过程。
此外,多尺度模型还可以用来表征热力学和力学特性等,以及燃烧流体中空气和燃料分子等混合和流动的多尺度现象。
五、实验和数值模拟实验和数值模拟是用来分析燃烧颗粒双相流动的一种有力工具。
实验可以帮助我们定量测量湍流双相流的各项参数,如颗粒的速度、密度以及物质的混合比等;而数值模拟则可以为我们提供更加真实的计算模型以及更准确的预测结果。
综上所述,燃烧颗粒双相流是一个复杂的系统,使用输运方程理论,多尺度模型,概率密度函数,实验和数值模拟等方法,可以综合起来实现对湍流双相流的有效模拟,从而为相关工程应用提供有效支持。