《相交线、平行线》基础测试1
- 格式:doc
- 大小:179.00 KB
- 文档页数:5
一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .72.已知一个角是这个角的余角的13,则这个角的度数是( ). A .45︒ B .60︒ C .67.5︒ D .22.5︒ 3.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+ 4.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒ 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 6.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个7.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°8.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角10.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6011.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等12.如图,直线AD //BC ,AC 平分∠DAB ,若∠1=65°,则∠2的度数为( )A .65°B .50°C .60°D .70°二、填空题13.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.14.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.15.如图,已知AB ∥CD ,∠1=120°,则∠C =____.16.已知直线//a b ,将一个含有45度角的直角三角板(90︒∠=C )按如图位置摆放,若160∠=︒,则2∠的度数是_____________.17.如图所示,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为__________;18.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果62ABO ∠=︒,46DCO ∠=︒,则BOC ∠的度数是________︒.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.三、解答题21.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)22.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.23.已知一个角的补角比这个角的余角的2倍大10°,求这个角的度数.24.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 25.如图,AE //CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;(2)判断AD 与BC 的位置关系,并说明理由.26.已知:如图,∠BAP +∠APD =180°,∠1=∠2.试说明:∠E =∠F .(请在横线处填理由)解:∵∠BAP +∠APD =180°,∴AB ∥CD .( ),∴∠BAP =∠APC ( ),∵∠1=∠2(已知)由等式的性质得:∴∠BAP ﹣∠1=∠APC ﹣∠2,即 ,∴AE ∥FP ( ),∴∠E =∠F ( ).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD ∥EF 得出∠CGE=∠GCD ,再由CG ∥AF 得出∠CGE=∠AFE ,根据AB ∥CD ∥EF 可得出∠AFE=∠DHF=∠AHC=∠BAH ,由此可得出结论.【详解】解:∵CD ∥EF ,∴∠CGE=∠GCD ,∠AFE=∠DHF .∵CG ∥AF ,∴∠CGE=∠AFE .∵AB ∥CD ,∴∠BAH=∠DHF ,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH .故选:B .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等. 2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x , 依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.4.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.5.C解析:C【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数.【详解】∵AB ∥CD ,∠BAD=35°,∴∠ADC =∠BAD =35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.7.C解析:C【分析】首先过点D 作DF ∥AE ,交AB 于点F ,由AE ∥BC ,可证得AE ∥DF ∥BC ,然后由两直线平行,同旁内角互补,证得∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,继而证得结论.【详解】过点D 作DF ∥AE ,交AB 于点F ,∵AE ∥BC ,∴AE ∥DF ∥BC ,∴∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,∴∠C+∠CDE+∠E =360°,故选C .【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用. 8.A解析:A【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.B解析:B【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.11.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.12.B解析:B【分析】根据平行线性质得出∠1=∠DAC =65°,∠2+∠BAD=180°,求出∠BAD ,即可得出∠2的度数【详解】解:∵AD ∥BC ,∴∠1=∠DAC =65°,∵AC 平分∠DAB ,∴∠BAD=2∠DAC =130°,∵AD ∥BC ,∴∠2+∠BAD=180°,∴∠2=180°-130°=50°故选:B .【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠BAD 的度数.二、填空题13.20【分析】由已知珠江流域某江段江水流向经过BCD 三点拐弯后与原来相同得AB ∥DE 过点C 作CF ∥AB 则CF ∥DE 由平行线的性质可得∠BCF+∠ABC=180°所以能求出∠BCF 继而求出∠DCF 又由C解析:20【分析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF ,继而求出∠DCF ,又由CF ∥DE ,所以∠CDE=∠DCF .【详解】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.14.120°【分析】根据平行线的性质解答即可【详解】解:∵a∥b∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a∥b,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点.15.60°【解析】∵∠1+∠FEB=180°∠1=120°∴∠FEB=180°-∠1=60°∵AB//CD∴∠C=∠FEB=60°故答案为60°解析:60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.16.75°【分析】先根据对顶角的性质求得∠4=60°然后由三角形外角的性质得∠5=105°然后根据补角的定义求得∠3最后运用平行线的性质解答即可【详解】解:如图所示∵∠4=∠1=60°∠B=45°∴∠5解析:75°【分析】先根据对顶角的性质求得∠4=60°,然后由三角形外角的性质得∠5=105°,然后根据补角的定义求得∠3,最后运用平行线的性质解答即可.【详解】解:如图所示.∵∠4=∠1=60°,∠B=45°∴∠5=∠4+∠B=60°+45°=105°,∵∠5+∠3=180°∴∠3=180°-∠5=75°∵直线a//b.∴∠2=∠3=75°.故答案为:75°.【点睛】本题考查了等腰直角三角形的性质、平行线的性质、三角形外角的性质等知识:根据三角形外角的性质以及邻补角互补求得∠3的度数是解答本题的关键.17.40°【分析】先根据两直线平行同位角相等求出∠BCN再利用平角定义即可求出【详解】∵PQ∥MN∠FBQ=50°∴∠BCN=∠FBQ=50°又∠ECF=90°∴∠ECM=180°-90°-50°=40解析:40°【分析】先根据两直线平行,同位角相等求出∠BCN,再利用平角定义即可求出.【详解】∵PQ∥MN,∠FBQ=50°,∴∠BCN=∠FBQ=50°,又∠ECF=90°,∴∠ECM=180°-90°-50°=40°.故答案为:40°.【点睛】本题是基础题,主要利用平行线的性质和平角的定义解答.18.【分析】过点O 作OE ∥AB 得到∠EOB=根据OE ∥ABCD ∥AB 推出OE ∥CD 得到∠COE=即可求出∠BOC 【详解】如图过点O 作OE ∥AB ∴∠EOB=∵OE ∥ABCD ∥AB ∴OE ∥CD ∴∠COE=∴解析:108【分析】过点O 作OE ∥AB ,得到∠EOB=62ABO ∠=︒,根据OE ∥AB ,CD ∥AB 推出OE ∥CD ,得到∠COE=46DCO ∠=︒,即可求出∠BOC.【详解】如图,过点O 作OE ∥AB ,∴∠EOB=62ABO ∠=︒,∵OE ∥AB ,CD ∥AB ,∴OE ∥CD ,∴∠COE=46DCO ∠=︒,∴∠BOC=∠EOB+∠COE=62°+46°=108°,故答案为:108.【点睛】此题考查平行线的性质:两直线平行内错角相等,平行线的推论:平行于同一直线的两直线平行.19.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D 点引CD ⊥AB 于C 然后沿CD 开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛 解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.20.20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比再根据已知条件即可得出结论;【详解】解:∵a ∥b ∴△ABC 的面积:△BCD 的面积=AB :CD =1:2∴△BCD 的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比,再根据已知条件即可得出结论;【详解】解:∵a ∥b ,∴△ABC 的面积:△BCD 的面积=AB :CD =1:2,∴△BCD 的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.三、解答题21.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM ,利用“同位角相等,两直线平行”可得出AB ∥CD ,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC 的度数,再利用“两直线平行,内错角相等”即可求出∠C 的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM ,∴AB ∥CD ,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC 平分∠AEF ,∴∠AEC=59°,(角平分线的定义)∵AB ∥CD ,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.22.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒ ∴ABE ∠的补角的度数为18048132︒-︒=︒答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.23.10°【分析】设这个角的度数为x°,根据已知条件列出含有x 的方程,解方程即可得到答案 .【详解】解:设这个角的度数为x ,依题意有:()()18029010---=x x解得10x =︒故这个角的度数为10°【点睛】本题考查补角和余角的定义,熟练掌握利用方程解决几何问题是解题关键.24.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.25.(1)∠2=145°;(2)BC∥AD,理由见解析.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,再根据邻补角的定义即可求得∠2;(2)由平行线的性质可知:∠A+∠ADC=180°,然后根据∠A=∠C,可证得∠C+∠ADC=180°,从而可证得BC∥AD.【详解】解:(1)∵AE∥CF,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC∥AD.理由:∵AE∥CF,∴∠A+∠ADC=180°,又∵∠A=∠C,∴∠C+∠ADC=180°,∴BC∥AD.【点睛】本题考查平行线的性质和判定.在本题中能正确识图找出同位角和同旁内角是解题关键.26.同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质即可说明理由.【详解】解:∵∠BAP+∠APD=180°,∵∠APD+∠APC=180°,∴∠BAP=∠APC(同角的补角相等),∵∠1=∠2(已知),由等式的性质得:∴∠BAP-∠1=∠APC-∠2,即∠EAP=∠FPA,∴AE∥FP(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:同角的补角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。
相交线与平行线》基础卷(含答案)第四章《相交线与平行线》基础卷一、选择题(30分)1、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行;B.内错角相等,两直线平行;C.同旁内角互补,两直线平行;D.两直线平行,同位角相等;答案:B2、下列四个说法中,正确的是()A.相等的角是对顶角;B.和为180°的两个角互为邻补角;C.两条直线被第三条直线所截,内错角相等;D.两直线相交形成的四个角相等,则这两条直线互相垂直;答案:C3、如图,直线a∥b,直线c分别与a、b相交,∠1=50°,则∠2的度数为()A。
150°;B。
130°;C。
100°;D。
50°;答案:B4、如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A。
35°;B。
40°;C。
45°;D。
50°;答案:C5、在下列实例中,①时针运转过程;②火箭升空过程;③地球自转过程;④飞机从起跑到离开地面的过程;不属于平移过程的有()A。
1个;B。
2个;C。
3个;D。
4个;答案:B6、如图,能判断直线ABCD的条件是()A.∠1=∠2;B.∠3=∠4;C.∠1+∠3=180°;D.∠3+∠4=180°;答案:C7、如图,XXX,OQ⊥PR,则点O到PR所在直线的距离是线段()的长。
A。
OQ;B。
RO;C。
PO;D。
PQ;答案:C8、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数为()A。
30°;B。
25°;C。
20°;D。
15°;答案:D9、如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A。
30°;B。
45°;C。
相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。
相交线与平行线练习题一、选择题1. 两条直线相交成直角,这两条直线叫做互相()。
A. 垂直B. 平行C. 相交D. 重合2. 同一平面内,不相交的两条直线叫做()。
A. 垂直线B. 平行线C. 相交线D. 重合线3. 直线a和直线b相交,如果a与b的交点是A,那么a和b的交点A叫做()。
A. 交点B. 垂足C. 端点D. 焦点4. 如果直线a和直线b平行,那么a与b之间的距离()。
A. 相等B. 不相等C. 无法确定D. 为零5. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线()。
A. 平行B. 垂直C. 相交D. 重合二、填空题6. 如果两条直线相交所构成的同位角不相等,那么这两条直线_________。
7. 两条平行线之间的距离是指这两条平行线中任意一点到另一条平行线的_________。
8. 两条直线相交,如果它们的交角是锐角,那么这两条直线_________。
9. 在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也_________。
10. 当两条直线相交,如果它们的对顶角相等,那么这两条直线_________。
三、判断题11. 如果两条直线相交成直角,那么这两条直线一定平行。
()12. 两条直线相交,它们的交点只有一个。
()13. 两条直线相交所成的同旁内角互补,那么这两条直线一定垂直。
()14. 两条直线平行,同位角相等,内错角相等,同旁内角互补。
()15. 如果两条直线被第三条直线所截,同位角不相等,那么这两条直线不平行。
()四、简答题16. 解释什么是平行线,并给出两条直线平行的判定条件。
17. 描述什么是垂线,并说明垂线的性质。
18. 给出两条直线相交时,同位角、内错角和对顶角的定义。
19. 解释什么是相交线,并描述相交线的性质。
20. 举例说明如何判断两条直线是否平行。
五、解答题21. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+1。
相交线与平行线基础测试卷(一)一.选择题(每空4分,计40分)1.到直线l 的距离等于2cm 的点有( )A .0个 B.1个 C.无数个 D 。
无法确定 2.下列说法中,正确的( )A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
3.如图,直角三角形ABC 中,∠ACB=900,DE 过点C 且平行于AB ,若∠BCE=350,则∠A 的度数为( )A .035B .065C . 055D .0454.如图4,P 为直线m 外一点,点A 、B 、C 在直线m 上,且PB ⊥m ,垂足为B ,∠APC=90°,则错误的是( )A.线段PB 的长度叫做点P 到直线m 的距离B.PA 、PB 、PC 三条线段中,PB 最短C.线段AC 的长度等于点P 到直线m 的距离D.线段PA 的长度叫做点A 到直线PC 的距离 5、如图所示,一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( ) A .45° B .60° C .75° D .80°(第4题图) (第3题图 ) ( 第5题图)6.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( ) A.① B.①② C.①②③ D.①②③④ 7.欣赏并说出下列各商标图案,是利用平移来设计的有( ) A 、2个 B 、3个 C 、5个 D 、6个8.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是( ) A.南偏西40° B.北偏西50° C.北偏西40° D.南偏西50°9. 如图4,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、AE 、ED 、EC 、DB 中,相互平行的线段有( ). (A )4组 (B )3组 (C )2组 (D )1组 10.下列说法中,正确的个数为( ) (1)过一点有无数条直线与已知直线平行 (2)如果a ∥b ,a ∥c ,那么b ∥c(3)如果两线段不相交,那么它们就平行A B D CE(4)如果两直线不相交,那么它们就平行 A.1个 B.2个 C.3个 D.4个 二.填空(每空4分,计40分) 第9题图三.11.如图,已知AB ∥CD ,请你补充一个条件___,使∠1=∠2成立.12、如图3所示,平面镜A 与B 的夹角为110°。
相交线与平行线测试题一、选择题1. 以下哪一条不是相交线的特征?A. 相交线在平面内相交于一点B. 相交线可以是曲线C. 相交线相交后形成4个角D. 相交线相交后,对角线相等2. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点但不是直线C. 相交于两点的直线D. 永远不会相交的曲线3. 以下哪个条件不能保证两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两条直线相交4. 如果两条直线相交,它们可以形成多少个角?A. 1个B. 2个C. 4个D. 无数个5. 平行线的性质中,以下哪一项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 平行线可以是曲线D. 平行线相交于无穷远处二、填空题6. 两条直线相交所形成的角中,如果两个角是内错角,那么这两个角的关系是________。
7. 如果两条直线相交,其中一个角是锐角,那么它的对角是________。
8. 平行线的性质之一是,如果两条平行线被一条横截线所截,那么同位角相等,内错角相等,同旁内角的和为________。
9. 两条平行线之间的距离是指________。
10. 如果两条直线是平行的,那么它们之间的夹角是________。
三、简答题11. 解释“内错角”和“同旁内角”的定义,并给出它们在平行线中的性质。
12. 描述如何使用“同位角”来证明两条直线是平行的。
13. 如果两条直线相交,它们形成的角有哪些可能的组合?请列举所有情况。
四、计算题14. 在平面直角坐标系中,直线L1的方程为 y = 2x + 3,直线L2的方程为 y = -x + 5。
求这两条直线的交点坐标。
15. 如果两条平行线在y轴上的距离为5,且一条直线的方程为 y =3x + 7,求另一条平行线的方程。
五、证明题16. 给定两条直线AB和CD,已知AB平行于CD,且AB与CD之间的距离为10。
如果AB上的点E到CD的距离为8,求点E到与AB平行且与CD相交的直线的距离。
相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。
答案:平行2. 在同一平面内,两条直线不相交,则它们是____。
答案:平行3. 垂直于同一直线的两条直线一定是____。
答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。
答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。
证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。
根据垂直于同一条直线的两条直线平行,所以AB∥CD。
2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。
证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。
根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。
又因为l1与l2相交,所以l3与l4相交。
四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。
已知∠1=45°,求∠2的度数。
答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。
《相交线、平行线》基础测试一、判断题(每小题2分,共10分)1.把一个角的一边反向延长,则可得到这个角的邻补角……………………()2.对顶角相等,但不互补;邻补角互补,但不相等……………………………()3.如果直线a⊥b,且b⊥c,那么a⊥c………………………………………()4.平面内两条不平行的线段..必相交…………………………………………()5.命题有真命题、假命题,定理也有真定理假定理…………………………()二、填空题(每小题3分,共27分)6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.9.如图,∠1的内错角是,它们是直线、被直线所截得的.10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.12.如图,直线AB∥CD∥EF,则∠α+∠β-∠γ=.13.“如果n是整数,那么2n是偶数”其中题设是,结论是,这是命题(填真或假).14.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________.三、选择题(每题3分,共18分)15.下列命题中,是真命题的是…………………………………………………()(A)相等的两个角是对顶角.(B)有公共顶点的两个角是对顶角.(C)一条直线只有一条垂线.(D)过直线外一点有且只有一条直线垂直于已知直线.16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于…………()(A)150°(B)160°(C)170°(D)180°17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④18.如图,图中的同位角共有…………………………………………………()(A)6对(B)8对(C)10对(D)12对19.如图,下列推理正确的是…………………………………………………()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于……………………………()(A)60°(B)90°(C)120°(D)150°四、画图(本题6分)21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则OA、OB、OC的关系是____________________.五、完成下列推理,并填写理由(每小题8分,共16分)22.如图,∵∠ACE=∠D(已知),∴∥().∴∠ACE=∠FEC(已知),∴∥().∵∠AEC=∠BOC(已知),∴∥().∵∠BFD+∠FOC=180°(已知),∴∥().23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.【证明】∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().六、计算或证明(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.求证:∠A+∠B+∠C=180°.27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).参考答案一、判断题1.【提示】根据叙述,画出相应的图形即可判断.【答案】√.2.【提示】两直线互相垂直时,对顶角相等且互补,邻补角互补且相等.【答案】×.3.【提示】画图,a⊥b,则∠1=90°,b⊥c,则∠2=90°.∴∠1=∠2.∴a∥c.【答案】×.【点评】由此题可知平面内垂直于同一直线的两直线互相平行,垂直关系没有传递性.5.【提示】前一句话是对的,后一句话是错的.假命题不能成为定理,定理都是真命题.【答案】×.4.【提示】仔细读题,想想线段的特征,线段有两个端点,有一定的长度,它们可以延长后相交,但本身可以既不平行,也不相交.【答案】×.【点评】平面内两条不平行的线段可以相交,也可以不相交,但平面内两条不平行的线段的延长线一定相交.6.【提示】注意补角和邻补角的区别,前者只要求满足数量关系,即两角和为180°,而后者既要求满足数量关系又要求满足位置关系,即互补相邻.【答案】∠1;∠1和∠3;∠BOE或∠4.7.【提示】根据“对顶角相等”和“角平分线的定义”来求.【答案】38°.8.【提示】由OA⊥OB,OC⊥OD,可得∠AOB=∠COD=90°,一周角为360°.【答案】36°.9.【答案】∠AEC和∠B,DF、DC(DF、BC)、AB.10.【提示】先证∠DCF=∠1=100°,再用“角平分线家义”来求∠2.【答案】50°.11.【提示】先判定AC∥BD.再利用平行线的性质求∠4的度数.【答案】80°.12.【提示】∵AB∥CD,∴∠ADC=∠α.∵∠ACD+∠CDF+∠β=360°,∴∠α+∠β +∠CDF=360°.∴∠α+∠β =360°-∠CDF.∵CD∥EF,∴∠CDF+∠γ=180°.∴∠α+∠β-∠γ =360°-∠CDF-∠γ =360°-(∠CDF+∠γ).∴∠α+∠β-∠γ =180°.【答案】180°.13.【提示】“如果”开始的部分是题设,“那么”开始的部分是结论.【答案】n是整数,2n是偶数,真.14.【答案】如果几个角是直角,那么这几个角都相等.15.【答案】D.16.【提示】延长BO到E.∵OA⊥OB,Array∴OA⊥OE.又OC⊥O(D)∴∠AOC+∠COE=∠AOC+∠AOD=90°.由同角的余角相等知:∠COE=∠AOD.∴∠BOC+∠AOD=∠BOC+∠COE=180°.【答案】D.17.【提示】可将涉及的一对角从整个图形中分离出来,单独观察.如①②③④这样可排除图中其它线的干扰,便于确定两角的相对位置.易知①、②、③正确.【答案】A.18.【提示】可采用17题的方法.两条直线被第三条直线所截,同位角有四对,图中有三组两条直线被第三条直线所截,均共有同位角4×3=12对.【答案】D.19.【答案】C.20.【提示】由AB∥CD,可得∠3+∠2=180°.∵∠1=∠3,∴∠1+∠2=180°.∵∠2=2∠1,∴3∠1=180°.∴∠1=60°.∴∠2=2×60°=120°.【答案】D.21.【答案】18,18,18.OA=OB=OC.22.【答案】CE,DF,同位角相等,两直线平行;EF,AD,内错角相等,两直线平行;AE、BF,同位角相等,两直线平行;EC,DF,同旁内角互补,两直线平行.23.【答案】AD,BC,内错角相等两直线平行;B,两直线平行,同旁内角互补;D,等量代换,同旁内角互补,两直线平行.24.【提示】由a∥b,∠1=113°,可求∠2.由c∥d和求出的∠2的度数可求∠4.然而求出∠3.【答案】∠2=113°.∠3=67°.∵a∥b(已知).∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知).∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).25.【提示】证明∠BAD=∠2.【证明】∵AD∥EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠2(等量代换).∴AB∥DG(内错角相等,两直线平行).26.【提示】由DE∥AC,DF∥AB,先证:∠A=∠EDF,再证∠A+∠B+∠C=180°.【证明】∵DE∥AC(已知),∴∠BED=∠A,∠BDE=∠C(两直线平行,同位角相等).∵DF∥AB(已知),∴∠BED=∠EDF(两直线平行,内错角相等),∠FDC=∠B(两直线平行,同位角相等).∴∠EDF=∠A(等量代换).∵∠BDE+∠EDF+∠FDC=180°(平角定义),∴∠C+∠A+∠B=180°(等量代换).即∠A+∠B+∠C=180°.27.【提示】B、C两点的直线AD的距离,是点到直线的距离.即相应的“垂线段”的长度.可用三角尺画出图形.【答案】图形如图所示,已知:BD=CD,且BE⊥AD,CF⊥AD,垂足分别为E、F.求证:BE=CF.。
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
基础测试
(一)判断题(每小题2分,共10分)
1.把一个角的一边反向延长,则可得到这个角的邻补角………()
2.对顶角相等,但不互补;邻补角互补,但不相等………………()3.如果直线a⊥b,且b⊥c,那么a⊥c…………………………()
4.平面内两条不平行的线段
..必相交………………………………()5.命题有真命题、假命题,定理也有真定理假定理………………()(二)填空题(每小题3分,共27分)
6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.
7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.
8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.
9.如图,∠1的内错角是,它们是直线、被直线所截得的.
10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.
11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.
12.如图,直线AB∥CD∥EF,则∠α+∠β-∠γ=.
13.“如果n是整数,那么2n是偶数”其中题设是,结论是,
这是命题(填真或假).
14.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________.
(三)选择题(每题3分,共18分)
15.下列命题中,是真命题的是……………………………………………()(A)相等的两个角是对顶角.(B)有公共顶点的两个角是对顶角.
(C)一条直线只有一条垂线.(D)过直线外一点有且只有一条直线垂直于已知直线.
16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于…………
()
(A)150°(B)160°(C)170°(D)180°
17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()
(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④
18.如图,图中的同位角共有…………………………………………()(A)6对(B)8对(C)10对(D)12对
19.如图,下列推理正确的是……………………………………()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD
(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC
20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于…………()(A)60°(B)90°(C)120°(D)150°
(四)画图(本题6分)
21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则
OA、OB、OC的关系是.
(五)完成下列推理,并填写理由(每小题8分,共16分)22.如图,∵∠ACE=∠D(已知),
∴∥().
∴∠ACE=∠FEC(已知),
∴∥().
∵∠AEC=∠BOC(已知),
∴∥().
∵∠BFD+∠FOC=180°(已知),
∴∥().
23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.
【证明】∵∠1=∠2(已知),
∴∥(),
∴∠DAB+∠=180°().
∵∠B=∠D(已知),
∴∠DAB+∠=180°(),
∴AB∥CD().
(六)计算或证明(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.
25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.
26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.
求证:∠A+∠B+∠C=180°.
27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).。