[方法总结] 补集的概念是建立在全集的基础上的, 所以 本题中先求出全集由哪些元素组成,再由交、并、补的概念 分别求得结论.自然数集 N 中最小的数是 0,在求全集时别 丢掉“0”.
设全集 U=R,A={x|x2+px+12=0},B={x|x2-5x+q =0},若(∁UA)∩B={2},A∩(∁UB)={4},求 A∪B. [解析] 因为(∁UA)∩B={2},
补集的应用
[例 2] 设全集 U={2,3,a2+2a-3},A={|2a-1|,2},
∁UA={5},求实数 a 的值. [分析] [解析] ∁UA={5}包含了两层意义:即 5∈U 且 5∉A. ∵∁UA={5},则 A∪(∁UA)={2,|2a-1|,5}=U1,
∴U1 也应为全集,则 U=U1,且 U1、U 都是三元素集.
={4,5},(∁SB)∩A={1,2,3},(∁SA)∩(∁SB)={6,7,8},求集合 A 和 B. [分析] 本题可用直接法求解, 但不易求出结果, 用 Venn
图法较为简单.
[解析] ∈B,5∈B.
解法一: (1)因为 A∩B={4,5}, 所以 4∈A,5∈A,4
(2)因为(∁SB)∩A={1,2,3},所以 1∈A,2∈A,3∈A,1∉B,2∉ B,3∉B. (3)因为(∁SA)∩(∁SB)={6,7,8},所以 6,7,8 既不属于 A,也 不属于 B. 因为 S={x|x≤10,且 x∈N+},所以 9,10 不知所属.
1,0,1,2,3,方程 x2-x-6=0 的解为 x=-2 或 3, 方程 x2-1=0 的解为 x=± 1, 所以 U={-3,-2,-1,0,1,2,3}, A={-2,3},B={-1,1},
所以∁UA={-3,-1,0,1,2}, ∁UB={-3,-2,0,2,3}, (∁UA)∩B={-3,-1,0,1,2}∩{-1,1}={-1,1}, A∪(∁UB)={-2,3}∪{-3, -2,0,2,3}={-3, -2 , 0,2,3}.