已知∁RA={x|x≤-1或x≥1},B={x|x≤a}. (1)若A∩B=⌀,求a的取值范围; (2)若A∪B={x|x<1},求a的取值范围. 思路点拨 利用数轴可以直观、形象地表示出集合A,B,从而求出a的取值范围.
(1)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},则(∁UA)∪(∁UB)=
;
(2)设全集为R,A={x|3≤x<7},B={x|2<x<10},则(∁RA)∩B=
;
(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},则∁U(A
答案 B
利用集合的运算性质求参数的值或范围 由集合的运算性质求解参数问题的方法: (1)当集合中元素个数有限时,可结合定义与集合知识求解; (2)当集合中元素是连续实数时,一般利用数轴分析法求解.
已知A={x|-1<x≤3},B={x|m≤x<1+3m}. (1)当m=1时,求A∪B; (2)若B⊆∁RA,求实数m的取值范围. 思路点拨 (1)将m=1代入集合B中 求出A∪B. (2)当B=⌀时,列不等式求出m的取值范围 值范围 确定m最终的取值范围. 解析 (1)当m=1时,B={x|1≤x<4}, ∴A∪B={x|-1<x<4}.
全集与补集
全集与补集 1.全集:在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个 给定的集合叫作全集,常用符号U ① 全部元素 .
文字语言
符号语言 图形语言
设U是全集,A是U的一个子集(即A⊆U),则由U中所有② 不属于 A的元素 组成的集合,叫作U中子集A的补集(或余集),记作③ ∁UA
∪B)=