一个正态总体参数的假设检验复习
- 格式:pptx
- 大小:475.16 KB
- 文档页数:31
正态总体方差的假设检验一、引言假设检验是统计学中常用的一种方法,用于判断关于总体参数的某种陈述是否成立。
在实际应用中,我们经常需要对总体方差进行假设检验,以确定样本数据是否能够代表总体的特征。
二、正态总体方差的假设检验在正态总体方差的假设检验中,我们通常使用方差比检验来判断总体方差是否有显著差异。
具体而言,我们设立原假设H0和备择假设H1,然后利用样本数据进行检验。
1. 原假设和备择假设原假设H0通常为总体方差等于某个特定值,记为σ^2 = σ0^2;备择假设H1通常为总体方差不等于该特定值,记为σ^2 ≠ σ0^2。
2. 检验统计量在正态总体方差的假设检验中,我们使用F检验统计量来进行判断。
F检验统计量的计算公式为F = S^2 / σ0^2,其中S^2为样本方差。
3. 拒绝域和接受域在给定显著性水平α的情况下,我们可以根据F检验统计量的分布来确定拒绝域和接受域。
一般来说,当F检验统计量落在拒绝域内时,我们拒绝原假设;当F检验统计量落在接受域内时,我们接受原假设。
4. F分布表的使用由于F检验统计量的分布是F分布,因此我们可以利用F分布表来确定拒绝域和接受域的临界值。
F分布表中给出了不同自由度和显著性水平下的临界值。
5. 计算步骤进行正态总体方差的假设检验时,我们需要按照以下步骤进行计算:(1) 提出原假设H0和备择假设H1;(2) 选择适当的显著性水平α;(3) 根据样本数据计算样本方差S^2;(4) 根据样本量n和显著性水平α确定F分布的自由度;(5) 根据F分布表找到对应的临界值;(6) 比较计算得到的F检验统计量与临界值,判断是否拒绝原假设。
三、实例分析为了更好地理解正态总体方差的假设检验,我们以某电子产品的寿命为例进行实例分析。
假设我们对该电子产品的寿命进行了100次观测,得到样本方差为S^2 = 200。
现在我们想要判断该电子产品的寿命是否满足某个特定的标准。
我们设立原假设H0:电子产品的寿命方差等于标准值,备择假设H1:电子产品的寿命方差不等于标准值。
高考正态分布知识点归纳作为中国高等教育的重要选拔方式,高考在很大程度上决定了学生的命运。
而统计学中的正态分布是高考中常出现的一个重要概念。
了解和掌握正态分布的相关知识点对于高考数学考试至关重要。
本文将从不同角度对高考正态分布知识点进行归纳和总结,以帮助考生更好地应对相关考题。
一、正态曲线和标准正态分布正态曲线是一种在统计学中经常使用的函数图形。
它呈现出钟形曲线的形状,具有中心对称、均值和标准差两个重要参数的特征。
高考中常见的正态分布问题会涉及到正态曲线的图形特点、标准差的计算等内容。
标准正态分布是指均值为0、标准差为1的正态分布。
对于任意一个正态分布,我们都可以通过标准化处理,将其转化为标准正态分布。
标准正态分布具有良好的性质,比如其面积一定等于1,可以使用标准正态分布表进行查找。
二、正态分布的性质和应用正态分布具有许多重要的性质,这些性质在高考中常常会涉及到。
首先是标准差的性质。
标准差越大,曲线越扁平;标准差越小,曲线越陡峭。
这个性质可以帮助我们察觉数据的分散程度。
其次是与正态分布有关的概率问题。
根据正态分布的特点,我们可以计算某个数值在一定范围内的概率。
例如,高考中常见的题目会要求计算某个班级或某个学生在全省排名中的百分位数。
最后是正态分布在抽样理论中的应用。
正态分布是许多统计方法的基础,比如样本均值的抽样分布、样本比例的抽样分布等。
这些应用在高考数学考试中也经常会出现。
三、正态分布与假设检验高考中的数学考卷通常涉及到学生的实际生活问题。
与实际问题相关的统计假设检验也常常和正态分布有关。
假设检验是一种通过收集样本数据,根据样本数据对总体参数进行推断的方法。
在高考中,常见的假设检验问题可能涉及到学生的身高、成绩等方面。
其中,若总体服从正态分布,则可以使用正态分布的性质进行假设检验。
对于高考数学考试中的假设检验问题,我们需要熟悉正态分布的假设检验步骤和相关公式,以便正确地解答相关题目。
四、高考试题中的正态分布问题在高考数学试卷中,正态分布相关的题目通常出现在概率与统计部分。
单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。
在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。
2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。
根据显著性水平,我们可以决定接受还是拒绝原假设。
3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。
在单个正态总体参数的情况下,通常使用t统计量或z统计量。
4.计算统计量的值:根据样本数据,计算所选统计量的值。
如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。
5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。
根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。
6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。
下面以一个具体的例子来说明单个正态总体参数的假设检验。
假设我们要检验一些公司员工的平均工资是否等于5000元。
我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。
现在我们要进行假设检验。
1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。
2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。
z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。
4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。
5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。
在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。
6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。
如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。
关于假设检验的详细总结与典型例题假设检验是数一考生普遍反映非常头疼的一块内容,因为它入门较难,其思想在初次复习时理解起来较难。
虽然这一部分在历年真题中考查次数很少,但为了做到万无一失,我们也应该准备充分,何况相对来说这一部分内容的难度和变化并不大。
为了让各位考生对假设检验有一个全面深入的理解和掌握,我们给出如下总结与例题。
对于假设检验,首先要理解其基本原理,即小概率原理,假设检验的方法即是从此原理衍生而来;其次,要掌握其步骤,会根据显著性水平α,即第一类心理学考研错误,来求拒绝域与接收域,其求法要根据不同的条件来套用公式,能根据理解推导公式是上策,如果时间不够,可以选择记忆各种不同条件下的求拒绝域的公式。
最后,相比之下两个正态总体参数的假设检验的考查可能性要低于一个正态总体参数的假设检验。
假设检验的基本概念数理统计的基本任务是根据样本推断总体,对总体的分布律或者分布参数作某种假设,然后根据抽得的样本,运用统计分析的方法来检验这一假设是否正确,从而作出接受假设或者拒绝假设的决定,这就是假设检验.根据实际问题提出的假设0H 称为原假设,其对立假设1H 称为备择假设. 假设检验中推理的依据是小概率原理:小概率事件在一次试验中实际上不会发生. 假设检验中的小概率α称为显著性水平,通常取0.05α=或者0.01α=.假设检验中使用的推理方法是:为了检验原假设0H 是否成立,我医学考研论坛们先假定原假设0H 成立. 如果抽样的结果导致小概率事件在一次试验中发生了,根据小概率原理,有理由怀疑0H 的正确性,从而拒绝0H ,否则接受0H .假设检验的步骤⑴根据实际问题提出原假设0H 和备择假设1H ; ⑵确定检验统计量T ;⑶根据给定的显著水平α,查概率分布表,确定拒绝域W ;⑷利用样本值计算统计量T 的值t ,若t W ∈,则拒绝0H ,否则接受0H .假设检验中可能犯的两类错误由于小概率事件还是可能发生的,根据小概率作出的判断可能是错误的. 事件0H 真而拒绝0H ,称为第一类(弃真)错误,犯第一类错误的概率为{}0P t W H α∈≤,因此显著性水平α是用来控制犯第一类错误的概率的. 0H 假而接受0H ,称为第二类(纳伪)错误,犯第二类错误的概率为{}1P t W H ∉,记作β.典型例题1.136,,X X 是取自正态总体(,0.04)N μ的简单随机样本,检验假设0:0.5H μ=,备择假设11:0.5H μμ=>,检验的显著水平0.05α=,取否医学考研论坛定域为X c >,则c = ,若10.65μ=,则犯第二类错误的概率β= .解 ⑴0H 成立时,0.04~(0.5,)36X N , {}00.50.051()0.1/3c P X c H αΦ-==>=-,0.5()0.95(1.645)0.1/3c ΦΦ-==,0.51.6450.1/3c -=,得0.5548c =.⑵1H 成立时,0.04~(0.65,)36X N{}10.55480.65()( 2.856)0.1/3P X c H βΦΦ-=≤==-.1(2.856)10.99790.0021Φ=-=-=2.设总体20~(,)X N μσ,20σ已知,检验假设00:H μμ=,备择假设10:H μμ>,取否定域为X c >,则对固定的样本容量n ,犯第一类错误的概率α随c 的增大而 .(减小)解 0H 成立时,200~(,)X N nσμ,犯第一类(弃真)错误的概率{}001(/P X c H nαΦσ=>=-,故犯第一类错误的概率α随c 的增大而减小.一个正态总体2(,)N μσ参数的假设检验 ⑴ 2σ已知,关于μ的检海文考研验(u 检验) 检验假设00:H μμ= 统计量X U =拒绝域2U u α>检验假设00:H μμ>统计量X U =拒绝域U u α<-检验假设00:H μμ<统计量X U =拒绝域U u α>⑵2σ未知,关于μ的检验(t 检验) 检验假设00:H μμ=统计量X t =拒绝域2(1)t t n α>-检验假设00:H μμ> 统计量0/X t S n = 拒绝域(1)t t n α<--检验假设00:H μμ< 统计量0/X t S n=拒绝域(1)t t n α>-⑶μ未知,关于2σ的检验(2χ检验) 检验假设2200:H σσ=统计量2220(1)n S χσ-=拒绝域222(1)n αχχ>-或者2212(1)n αχχ-<-检验假设2200:H σσ>统计量2220(1)n S χσ-=拒绝域221(1)n αχχ-<-检验假设2200:H σσ< 统计量2220(1)n S χσ-= 拒绝域22(1)n αχχ>-▲拒绝域均采用上侧分位数.两个正态总体21(,)N μσ、22(,)N μσ参数的假设检验.⑴两个正态总体21(,)N μσ、22(,)N μσ均值的假设检验(t 检验) 检验假设012:H μμ=统计量X Yt =拒绝域122(2)t t n n α>+-检验假设012:H μμ>统计量X Yt =拒绝域12(2)t t n n α<-+-检验假设012:H μμ<统计量X Yt =拒绝域12(2)t t n n α>+-⑵两个正态总体211(,)N μσ、222(,)N μσ方差的假设检验(F 检验) 检验假设22012:H σσ=统计量2122S F S = 拒绝域122(1,1)F F n n α>--或者1212(1,1)F F n n α-<--检验假设22012:H σσ>统计量2122S F S = 拒绝域112(1,1)F F n n α-<--检验假设22012:H σσ< 统计量2122S F S = 拒绝域12(1,1)F F n n α>--▲拒绝域均采用上侧分位数. 典型例题1.设n X X X ,,,21 是来自正态总海文考研体2(,)N μσ的简单随机样本,其中参数2,μσ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t = .解 统计量2(1)//(1)n n XX nXt S n Q n -===-2.某酒厂用自动装瓶机装酒,每瓶规定重500克,标准差不超过10克,每天定时检查,某天抽取9瓶,测得平均重X =499克,标准差S =16.03克. 假设瓶装酒的重量X 服从正态分布.问这台机器是否工作正常?(05.0=α).解 先检验0H :500μ=,统计量X t =, 拒绝域0.025(8) 2.3060t t >=,4995000.18716.03/3X t -===-,接受0H ;再检验0H ':2210σ≤,统计量222(1)10n S χ-=, 拒绝域220.05(8)15.507χχ>=, 22222(1)816.0320.5571010n S χ-⨯===,拒绝220:10H σ'≤, 故该机器工作无系统误差,但不稳定3.设127,,,X X X 是来自正态总体211(,)N μσ的简单随机样本,设128,,,Y Y Y 是来自正态总体222(,)N μσ的简单随机样本,且两个样本相互独立,它们的样本均值分别为13.8,17.8X Y ==,样本标准差123.9, 4.7S S ==,问在显著性水平0.05下,是否可以认为12μμ<?解 先检验0H :2212σσ=,检验统计量2122S F S =,拒绝域0.025(6,7) 5.12F F >=或者0.9750.02511(6,7)(7,6) 5.70F F F <==,221222 3.90.68854.7S F S ===,接受0H ; 再检验0H ':12μμ<,统计量1211w X Yt S n n =+, 拒绝域0.05(13) 1.7709t t >=,1.7773X Yt ==-,接受0H ',即可以认为12μμ<. ▲检验两个正态总体均值相等时,应先检验它们的方差相等.。
单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。
在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。
同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。
通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。
二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。
2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。
一般情况下,我们常使用0.05作为显著性水平。
3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。
在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。
4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。
5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。
6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。
三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。
2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。
3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。
例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。
4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。
总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。
正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。
有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。
(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。
5.判断(同前) 注:这个检验法称为u检验。
(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。
(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。
在基础上依据抽样分布特点可构造统计量作为检验之⽤。
具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。
注:关于正态标准差的假设与上述三对假设等价,不另作讨论。
(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。
续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。
某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。
③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。
⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。
[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。
已知废⽔中该有毒化学物质的含量X服从正态分布。
该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。