井眼轨道设计与控制
- 格式:ppt
- 大小:919.00 KB
- 文档页数:76
第五章井眼轨道设计与轨迹控制1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。
这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。
2.方位与方向的区别何在?请举例说明。
井斜方位角有哪两种表示方法?二者之间如何换算?答:方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上).方位角表示方法:真方位角、象限角.3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。
水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。
在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段.视平移是水平位移在设计方位上的投影长度.4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。
狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率.5.垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。
6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办?答:7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系?答:测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。
轨迹计算时,必须首先算出每个测段的坐标增量,然后才能求得测点的坐标值。
1 井身轨迹控制常规的水平井都由直井段、增斜段和水平段3部分组成。
由直井段末端的造斜段(kop)到钻至靶窗的增斜井段,这一控制过程为着陆控制;在靶体内钻水平段这一控制过程称为水平控制。
水平井的垂直段与常规直井及定向井的直井段控制没有根本区别。
水平井井眼轨道控制的突出特点集中体现在着陆控制和水平控制,设计到一些新的概念指标和特殊的控制方法。
1.1 水平井井眼轨道控制技术的特点水平井钻井技术是定向井技术的延伸和发展。
水平井的井眼轨道控制技术与定向井相比有类似之处,但也有显著差异,体现了水平井轨道控制的突出技术特征。
1.1.1中靶要求高定向井的靶区为目的层上的一个圆形,通称靶圆,靶圆中心称为靶心。
靶心是井身设计轨道中靶的理论位置,而靶圆是考虑到因误差而造成的实钻轨道中靶的允差范围。
一般来说,定向井的目的层越深,其靶圆半径也越大。
例如一口井垂深为1800-2100m的定向井,其靶圆半径通为30-45m,如上所述,水平井的靶体是一个以矩形靶窗为前端面的呈水平或近似水平放置的长方体或与之接近的几何体(拟柱体,棱台等)。
靶窗的高度与油层状况有关,宽度一般是高度的5倍,水平井长度则和水平井的增斜段曲率半径类型有关。
例如,对厚油层,其靶窗高度可达20m,但对薄油层,该高度可小到4m甚至更小。
按我国对石油水平井的规定,水平段井斜角应在86°以上,长、中、短半径3类水平井的水平段长度一般分别不得小于500m,300m,60m 。
很显然,水平井的目标(靶体)比定向井的目标(靶圆)要求苛刻,前者是立体(三维),后者是平面(二维),因此中靶要求更高。
对于水平井来说,井眼轨道进入目标窗口(靶窗)还不够,还要防止在钻水平段的过程中钻头穿出靶体造成脱靶,而对定向井来说,只要保证钻入靶圆即为成功。
1.1.2控制难度大由于上述定向井和水平井的目标性质与要求对比可知,水平井轨道控制难度大于定向井。
而且,由于常规定向井的最大井斜角一般在60°以内,不存在因目的层的地质误差造成脱靶的问题。
定向井钻井轨迹设计与控制技术近年来,中国发展迅速,石油在经济快速发展中的重要作用已经显现。
石油不仅可以提炼汽油和柴油,维持汽车和机器的运转,还可以将天然气作为人们生活和工业的重要燃料。
因此,石油勘探开发逐渐增多,石油钻井技术也得到很大发展。
19世纪中后期,石油钻井中定向井钻井技术的首次正式应用。
在工程建设过程中,井眼轨迹控制技术可视为定向井钻井的关键技术。
直井、斜井和稳定斜井段的井眼轨迹控制技术也不同。
总的来说,随着井眼轨迹控制技术的不断改进和完善,定向井轨迹控制水平有了很大的提高。
定向井;轨迹;控制技术引言在油气开采中,定向钻井技术是一种应用广泛的技术,其开采效率和施工质量直接影响油气开采的整体质量。
它在提高天然气和石油开采效率方面发挥着重要作用。
由于使用的地形复杂多变,决定了定向井建设项目对轨道设计和控制的要求更加严格。
影响整个施工过程的最重要因素是轨迹控制的准确性,轨迹设计和轨迹控制对钻井的整体质量起着至关重要的作用。
在石油钻井工程中,在整个定向井施工过程中,轨迹控制技术对整个工程的整体质量具有重要的现实意义。
1 定向井轨迹设计1.1 设计原则第一,实现地质目标是建设的原则。
定向钻井时,钻井的主要目的是使钻井穿过地层中的多个油层,防止井下复杂,地层易坍塌、易漏,或提取井间难以到达的死油气,或钻应急救援井,或在平台上钻定向井,节省占用空间,达到后期管理的目的。
无论哪种定向井,井眼轨迹设计都要首先考虑地质设计。
对于地质设计,如果不能满足设计要求,就无法设计出完美的钻孔轨迹。
第二,是达到安全、优质、高效钻井的目的。
在定向井轨道的设计中,地质目标有望实现。
因此,要实现这一地质目标,需要各种轨道形式。
选择最有利于现场施工难度、最小摩擦力矩和井眼轨迹控制的轨道形式,才能实现安全、优质、高效的定向钻进。
因此,在设计定向井轨迹和确定偏移点时,需要选择地层稳定、易偏移的层位。
第三,满足后期生产的要求。
第三个原则对于满足后期采油的要求至关重要,尽管这两个原则在定向井轨道设计中更为重要。
控制工作中,工作人员可以结合偏移距离变化和靶前位移变化,控制难度比较大。
1.3 三维眼井摩阻扭矩较大在三维水平井斜井段,需要适当的增斜和扭方位,在下钻和滑动钻钻进过程中,钻具很容易发生屈曲问题,钻具接触井壁之后会产生较大的摩阻扭矩,产生严重的托压问题,不利于向钻头传递钻压,降低了钻井速度,延长了定向钻的周期。
由于上孔的扭转方向增加了全角度变化率和摩擦扭矩,定向工具面无法放置在正确位置,在同一位置反复升降钻具,增加了定向钻进的难度,延长了定向钻进的钻进周期[1]。
2 涪陵页岩气田三维水平井井眼轨迹控制技术思路采用原有的井眼轨迹设计模式,不利于实现三维水平井优化和快速定向钻井。
其工作目标是使摩擦力矩最小。
在实际工作中,有必要对原始井眼轨迹类型进行优化,改进轨迹参数,优化三维井眼轨迹设计技术,以提高定向钻井速度。
因为三维井眼轨迹控制工作具有较大的难度,为了保障钻井的安全性,提高现场定向施工的便利性,需要利用精细控制措施,严格控制井段井眼轨迹,优化涪陵页岩气田三维水平井井眼轨迹控制技术,降低整体施工难度。
面临三维井眼摩阻扭矩较大的问题,工作人员可以利用降摩减扭工具,避免发生托压问题,利用三维井眼降摩减阻技术,高效控制三维井眼轨迹。
要想优化三维井眼轨道,工作人员需要合理选择三维井眼轨道,把握入窗时机,提高施工现场的操作性。
利用预目标位移,尽可能调整倾斜点,缩短稳定段长度,有效缩短钻进周期。
为了降低整体工作量,要在稳斜段改变方位。
结合降摩减扭的工作理念,优化轨道全角的变化率,控制稳斜段的井斜角[3]。
在实际应用中,将三维水平井轨迹分为六段。
在纠偏井段的井眼内设置二维增斜段,以保证增斜效果。
在稳斜边变方位井段,施工人员需要全力扭方位,有效减少工作量。
在边增斜边调整方位井段,应合理调整调整工具面,合理调整方位角。
在着陆段利用增斜入窗,合理调整参数。
3 涪陵页岩气田三维水平井井眼轨迹控制关键技术三维水平井偏移距比较大,同时也会增加变方位工作量,在大斜度井段调整方位难度较大,定向钻工作周期比较长,井眼轨迹缺乏圆滑性,将会影响到后续井下作业的安全性。