井眼轨迹与井身结构设计
- 格式:pptx
- 大小:3.09 MB
- 文档页数:132
第1章钻井工程方案1.1钻井工程地质概况1.1.1 区块地质概况1.1.1.1区块构造及地理环境特征本设计方案研究目标区块为页岩I区块,该区块总体为我国南方丘陵山地,受到来自北西方向挤压应力作用,以正向构造为主,各背斜带之间以宽缓向斜带为界。
海拔最高675m,最低250m,多在400〜600m之间。
该地区交通较为便利,区内各场镇间均有公路相通。
该地区属亚热带季风性湿润气候,常年平均气温15~17C。
其总的特点是:四季分明,热量充足,降水丰沛,年降水量超过1000mm,水系发育,季风影响突出。
四季特点为:春早,常有倒春寒”和局部的风雹灾害;夏长,炎热,旱涝交错;秋短,凉爽而多绵雨;冬迟,无严寒,雨雪少,常有冬干。
在降水多的季节,需预防山洪暴发所引起的泥石流、塌方、滑坡,河道涨水所引发的洪水等自然地质灾害。
1.1.1.2区块地层分布页岩I区块古生界奥陶系一中生界三叠系自下而上主要发育:十字铺组、宝塔组、涧草沟组、五峰组、龙马溪组、小河坝组、韩家店组、黄龙组、梁山组、栖霞组、茅口组、龙潭组、长兴组、飞仙关组、嘉陵江组。
根据目前勘探开发情况,将下志留统龙马溪组下部一上奥陶统五峰组约86m层段含气泥页岩段作为本区主要的目的层。
按照从老到新的顺序,由五峰组至嘉陵江组具体地层岩性及地层厚度见表3.1。
1.1.1.3储层分布该地区五峰组一龙马溪组总体上分布稳定,尤其是目的含气层段在地震剖面和连井对比剖面上都有很好的响应。
气层总厚度在83〜90m,纵向上连续,中间无隔层。
据现有钻井测井、录井以及岩芯特征,该地区目的含气页岩段从下到上可划分出三段、五个亚段,其中第1段(分11亚段和12亚段)为碳质硅质泥页岩,厚度分别约为33m和18m;第2段为含炭质粉砂质泥岩,厚度约17m;31亚段为含炭质灰云质泥页岩,厚度约13m;32亚段为含炭质粉砂质泥页岩,厚度约6m,通过现有资料发现,各亚段在全区分布基本稳定。
第3章钻井工程方案1.1.1.4区块地应力及储层岩石力学特征通过对目的层岩石力学参数测试,得出杨氏模量23〜37GPa,泊松比0.11〜0.29,体积模量为14〜18GPa,剪切模量10〜14GPa,实测最大主应力为61.50MPa, 最小主应力为52.39MPa,根据应力剖面图可以得到上下隔层应力差约8MPa。
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构设计流程指导1、 通过定向井轨道设计,获得设计井具体打井时应遵循的井眼轨道2、 在上图的椭圆部分,可以获得设计井的井深,或完钻井深,这一井深是开展井身结构设计的重要依据。
本井的设计结果是4696.40米。
3、 单击如下 “井身结构设计” 菜单项程序将弹出“井身结构设计程序窗口”如下图:在进行井身结构设计之前,应当给定“地层剖面”与“压力剖面”建议选择5”套管此井深为前面的定向井轨道设计结果4、单击“地质分层”,程序将弹出以下窗口该窗口的数据,应当是在昨天以下窗口输入的地质分层数据的直接调用注意在这里应当是将原来的设计垂深转变成为设计井深,也就是将底界垂深转变为设计井深,最后的井深应当是大于等于实际井深(本井为4696.40米),转变完成后,将数据保存入库5、单击步骤3井身剖面设计窗口中的“压力管理”按钮,弹出如下窗口。
在此窗口中,应当输入本井的地层压力和地层破裂压力数据。
为方便起见,可以单击窗口右上角的下拉选择框,如上图选择“实验井”选项后,在单击“复制”,程序会自动复制、调用相关的压力数据,得到下图的结果。
上图中的最终井深为2390.00米。
需要按照本井的设计井深4696.40米,进行相应的转换,即在井深一栏的数值都乘上系数“4696.60/2390.00 = 1.965”,由此得到如下结果。
将数据更新入库后,返回到“井身剖面设计窗口”。
6、单击“井身结构设计窗口”中的设计按钮,程序将弹出如下窗口,并同时完成该井的井身结构设计。
如果在上面的设计结果窗口的椭圆位置的数据表中缺少密度和套管下深数据,就需要根据右边图形设计结果,来手工录入相应的数据。
设计完成后,单击“返回”按钮,程序将退回到“井身结构设计界面”。
建议将上述井身结构设计结果图形,即上面的红色方框部分截图后,粘贴到“钻井工程设计书”中去。
7、。
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
08年填空,名词解释,简答题钻井:1、井身结构设计的内容a)确定套管的层数b)确定各层套管的下深c)确定套管尺寸与井眼尺寸的配合2、合理完井的要求①油、气层和井筒之间应保持最佳的连通条件,油、气层所受的损害最小;②油、气层和井筒之间应具有尽可能大的渗流面积,油、气入井的阻力最小;③应能有效地封隔油、气、水层,防止气窜或水窜,防止层间的相互干扰;④应能有效地控制油层出砂,防止井壁垮塌,确保油井长期生产;3、司钻法压井(定义)第一步(第一循环周):在平衡地层压力的情况下循环排出受污染的钻井液。
第二步:加重钻井液,然后用加重后的钻井液循环压井(第二循环周)4、钻柱设计三种方法由方钻杆、钻杆、钻铤等基本钻具组成,并用配合接头连接起来的入井管串称为钻柱。
①确定钻铤长度Lc②从(钻铤)开始,由下而上确定钻杆可下长度③由管材规范、钢级计算Pw④计算允许的最大静拉负荷Pa⑤计算每段钻杆的许下深度,并决定实际的下入长度⑥下部钻柱进行抗外挤强度校核。
5、司钻性(名词解释)6、水力参数设计原理7、水力参数设计步骤(P165 )(1)根据理论计算法或实测法,求得循环压耗系数m和n;(2)根据工程实际情况,选定最小排量。
8、钻井液流变参数在外力作用下,钻井液流动和变形的特性。
如钻井液的塑性粘度、动切力、表观粘度、有效粘度、静切力和触变性等性能都属流变性参数。
采油:1、采收率定义及影响因素采收率:可采储量与地质储量的比值。
2、压裂液分(前置液)(携砂液)(顶替液)3、水力压裂和酸压的增产机理压裂酸化:在高于岩石破裂压力下将酸注入地层,在地层内形成裂缝,通过酸液对裂缝壁面物质的不均匀溶蚀形成高导流能力的裂缝。
水力压裂:裂缝内的支撑剂阻止停泵后裂缝闭合,酸压一般不使用支撑剂,而是依靠酸液对裂缝壁面的不均匀刻蚀产生一定的导流能力。
4、5、水处理措施:水源不同,水质不同,水处理的工衣也就不同。
现场上常用的水质处理措施有以下几种。
(1)沉淀(2)过滤(3)杀菌(4)脱气(5)除油(6)曝晒。
石油工程油井钻井工程设计书第一章一、基本数据1、井位:(1) 井口地理位置:(2) 构造位置(3) 井位坐标:井口O 纵X: 4 127 560.03m 横Y: 20 630 236.82m靶点A 纵X: 4 127 325.00m 横Y: 20 630 350.00m靶点B 纵X: 4 127 225.00m 横Y: 20 630 398.16m2、井别:生产井 (油藏评价斜井)3、设计垂深: 2370.00m,A靶垂深2125.00m,B靶垂深2265.00m,A~B靶间水平距离111.99m。
4、完钻层位:沙三上。
5、钻探目的:6、完钻原则:钻7、下套管原则:表层套管:(1)直径273.1mm 钢级J55 壁厚9.65mm 表层套管,预计下入深度300m,具体要求执行钻井工程设计。
(2)水泥返高:返至地面。
油层套管:(1)直径139.7mm 钢级N80 壁厚9.17mm 油层套管,阻流环下过相当于官2-斜2井2433.60~2480.50m上油层下含油水层以下20m,具体下入深度测井后由现河采油厂地质所确定。
(2)短套管:预计下入短套管2根,具体下入深度测井后确定。
(3)水泥返高:返至最上一层油气层、油水同层、含油水层顶界以上200m。
二、设计地质剖面1、设计井及依据井地层分层:地层名称设计井号依据井号界系统组段官2-斜22 官7-斜49 官2-斜2底垂深(m)厚度(m)底深(m)含油井段(m)底深(m)含油井段(m)新生界第四系更新统平原组275.00 275.00 未测274.00新近系上新统明化镇组960.00 685.00 972.00 962.00中新统馆组1395.0435.001387.01398.0古近渐新东营组1760.0365.001836.01794.00 沙河街组沙一段1990.0230.002052.02006.0沙二段2165.0175.002190.02170.0沙三上2370.0(未穿)205.002440.02352.0~2382.02481.02283.4~2480.5 沙三中2596.02522.6~2525.32511.0沙三下2742.02625.0~2630.8沙四上纯上亚段2833.0纯下亚段2922.0沙四下3008.0系统代表整合代表不整合代表假整合断层2、邻井测井及钻探成果:官7-斜49井井口位于设计井井口方位:149°距离:529m。