电梯曳引机分析解析
- 格式:doc
- 大小:118.00 KB
- 文档页数:21
电梯曳引机工作原理电梯曳引机是电梯系统中的核心部件之一,它的主要功能是传递电动机的动力,将电梯升降机轿厢沿着导轨运行,并保证行程的平稳与安全。
本文将详细介绍电梯曳引机的工作原理及相关知识。
一、电梯曳引机的构成电梯曳引机主要由电动机、减速器、曳引轮、离合器等多个组成部分组成。
曳引轮是电梯曳引机中最为重要的零部件之一。
它是电梯耗能最大的部件,因为它必须在电动机的驱动下,通过钢丝绳在导轨上完成升降机的上下运动。
电梯曳引机的核心部件是曳引轮,其作用是在电动机的驱动下通过钢丝绳的拉扯,将轿厢拉动沿着导轨上下运动。
在曳引轮中,存在一个弹簧式刹车,用于对曳引轮的运动进行控制。
离合器则扮演着重要的角色,它能够在电动机启动的瞬间迅速响应,让曳引轮开始运转,将轿厢沿着导轨运行。
而减速器则起到了降低电动机的速度,提高扭矩的作用。
除了曳引轮、电动机、减速器、离合器等核心部件外,电梯曳引机还包括了导轨的固定系统、配重系统、紧急制动系统等,这些部分都是电梯曳引机正常运行所必需的。
二、电梯曳引机的基本工作原理电梯曳引机的工作原理可以简单地描述为:电动机通过减速器驱动曳引轮,在钢丝绳的牵引下将电梯轿厢平稳地移动到各个楼层。
曳引机的电机通常使用3相异步电机,它具有运行可靠、维护简单、耐久性强等优点。
电机驱动曳引机的曳引轮,曳引轮通过多股钢丝绳从轿厢下方传动力量,使轿厢完成上升和下降的动作。
轿厢上方有配重系统,它用于平衡轿厢的重量,使得电动机在启动时只需提供足够的力,即可将轿厢沿着导轨顺利地升降。
在轿厢上方与配重之间,通过细钢丝则连接,在升降时保持平衡,实现平稳升降。
曳引机还设置了多层制动系统,以确保在紧急事件时电梯的安全使用。
制动系统包括梯形制动、弹簧制动。
弹簧制动是依靠弹簧的伸缩作用,使制动器紧贴于曳引轮,实现紧急制动的目的。
三、电梯曳引机的工作特点1、电梯曳引机具有高的消耗性能。
由于曳引轮必须不停地搭接电梯轿厢和导轨间的钢丝绳,导致它的磨损和疲劳程度较高,因此定期的检查和维护对于延长电梯曳引机的使用寿命非常重要。
2024年电梯曳引机市场分析现状概述电梯曳引机是电梯中的关键组件,它负责提供动力驱动电梯运行。
电梯曳引机市场作为电梯产业链中的重要环节,具有重要意义。
本文将对电梯曳引机市场的现状进行分析,并探讨未来的发展趋势。
市场规模电梯曳引机市场在近年来保持了高速增长的态势。
根据数据统计,2019年全球电梯曳引机市场规模达到100亿美元,预计未来几年将继续保持较高增长率。
这主要受益于全球城市化进程的加快,以及楼层建筑规模的扩大。
市场驱动因素1.城市化进程加速:全球城市化进程带来了对交通系统的需求增加,电梯曳引机作为城市交通系统中不可或缺的组成部分,市场需求受到持续推动。
2.楼层建筑规模扩大:随着城市人口增加,对楼层建筑的需求也随之增长,这推动了电梯曳引机市场的发展。
3.技术创新驱动:曳引机技术的不断创新和提升为市场提供了更多发展机遇,例如新型材料的应用和智能控制系统的引入。
市场竞争格局电梯曳引机市场竞争激烈,主要企业包括海德尔、扬子电梯、三一重工等。
其中,海德尔作为全球领先的电梯曳引机制造商,占据着市场的主导地位。
此外,国内外企业都在加大研发投入,通过技术创新不断提升产品竞争力。
市场发展趋势1.智能化时代的到来:随着人工智能和物联网技术的发展,电梯曳引机市场也面临智能化改造的商机。
智能化曳引机可以通过传感器和数据分析,实现故障预警、节能优化等功能。
2.节能环保要求提升:针对电梯使用过程中的能源消耗和环境污染问题,市场对节能环保的要求逐渐提升。
曳引机制造商将加大研发力度,推出更加节能环保的产品。
3.产品升级与升级换代:曳引机市场将逐步进入升级换代期,高效、智能、可靠的产品将更受市场青睐。
制造商将加大研发投入,推动产品升级换代。
市场挑战1.价格竞争压力:电梯曳引机市场存在激烈的价格竞争,制造商需要在降低成本的同时提供高品质产品,以保持竞争力。
2.行业标准制定不完善:目前,电梯曳引机行业标准制定不够完善,这限制了市场的规范发展。
电梯曳引系统的结构和作用简介电梯曳引系统是现代城市生活中广泛应用的一种重要技术,它为人们提供了便利和安全。
本文将深入探讨电梯曳引系统的结构和作用,并分享我对该系统的观点和理解。
首先,让我们来了解电梯曳引系统的结构。
电梯曳引系统主要由曳引机、钢丝绳、导轨以及驱动装置组成。
曳引机是电梯曳引系统的核心部件,它通过驱动装置带动钢丝绳在导轨上上下移动,从而实现电梯的运行。
钢丝绳作为电梯的承重部件,具有高强度和耐磨性,保证了电梯的安全运行。
导轨则起到了引导电梯运行的作用,确保电梯在运行过程中的稳定性和安全性。
其次,我们来探讨电梯曳引系统的作用。
电梯曳引系统的主要作用是实现电梯的垂直运行。
通过曳引机的驱动,钢丝绳带动电梯的载重舱沿着导轨上下运行,从而实现人们在建筑物中的垂直交通。
这种垂直交通方式不仅提高了人们的生活质量和工作效率,同时也有效解决了城市高层建筑的交通问题。
电梯曳引系统还配备了多重安全装置,如紧急制动器、过载保护装置等,以确保电梯的安全运行。
从简到繁,由浅入深地探讨电梯曳引系统的结构和作用,有助于我们更深入地理解这一技术。
在结构方面,电梯曳引系统的组成部件相互协作,形成一个复杂而高效的系统。
曳引机通过驱动装置控制钢丝绳的运动,实现电梯的运行。
而在作用方面,电梯曳引系统通过精确的控制和安全装置的保护,确保电梯在垂直运行过程中的安全性和可靠性。
对于这个关键词、主题或概念,我认为电梯曳引系统在现代城市生活中扮演着至关重要的角色。
它不仅提供了便捷的交通方式,同时也从根本上解决了城市高层建筑的交通问题。
电梯曳引系统的结构和作用使得人们能够安全、快速地在建筑物中垂直移动,极大地改善了人们的生活质量和工作效率。
综上所述,电梯曳引系统的结构和作用是现代城市生活中不可或缺的一部分。
通过深入探讨其结构和作用,我们能够更全面、深刻地理解这一技术的重要性和价值。
电梯曳引系统为我们的生活带来了极大的方便和便捷,并在城市发展中发挥着重要的作用。
电梯曳引机故障分析及解决方法WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-电梯曳引机故障分析及解决方法电梯曳引机的故障的诊断,由于各生产厂家的曳引机结构千差别,技术要求也不尽一致,所以对具体问题的处理方法不可能公式化。
本文仅就一些常见故障的现象,原因及排除方法作一概略的综述,仅供参考。
1 现象:曳引机水平方向振动超差,且振动频率与电机转速相吻合。
原因:①曳引机底座安装面不平,造成底座强迫变形,破坏了曳引机的几何精度。
②电机轴与蜗杆轴同轴度超差,多发生于弹性联轴器座式电机结构的曳引机。
排除方法:①摘下钢丝绳,松开地脚螺栓,使曳引机处于自由状态,重新调整曳引机底座安装面。
若底座下面垫有橡胶板的安装结构不必摘下钢丝绳,只需调整地脚处橡胶板的压缩量即可。
②重新检查调整电机与蜗杆的同轴度。
2 现象:电机发出有节奏的敲鼓声,频率与电机转速相吻合。
原因:一般是由于曳引机底座安装倾斜使电机轴向前或向后窜到了极限位置,电机轴台阶面与滑动轴承端面产生摩擦所致。
排除方法:调整底座使曳引机处于水平位置或采取强迫措施使电机轴不向前后窜动。
3 现象:曳引机制动器制动时轿厢内有明显的冲击感,即顿一下。
原因:①制动器闸瓦与制动轮的间隙过大,国际规定小于。
②蜗杆轴轴向游隙过大。
③蜗轮副啮合侧隙过大,这种情况易发生在已使用多年的曳引机。
排除方法:①调整松闸间隙至标准要求。
②检查蜗杆推力轴承锁紧螺母是否松动,如无松动应减薄垫片,使游隙达到出厂标准要求。
③蜗轮副中心距调整方式有多种如:支架式、斜块式和偏心式,但均可使侧隙调整至出厂要求。
4 现象:整机噪声大,机房噪声超过80dB(A)。
原因:①电机绕组发生故障,产生高频交流声,多发生在低速绕组运行时,有时也发生在高速运行时,属电机制造问题。
②蜗轮副接触斑点位置偏向旋入端或蜗轮齿面光洁度差(易发生在铲刮的齿面)。
③蜗杆轴上推力轴承滚道质量差。
描述电梯曳引机工作原理
电梯曳引机是电梯中最主要的传动装置之一,工作原理如下:
1. 电梯曳引机由一台电动机带动,电动机通过减速传动装置将高速旋转的电动机输出轴转速降低到适合曳引机工作的速度。
2. 曳引机内部装有齿轮和钢绳,曳引机通过减速传动装置将电机驱动的输出扭矩传递到绕制在曳引机齿轮边缘的钢绳上。
3. 当电梯上升或下降时,曳引机通过绕制在曳引齿轮周边的电梯钢绳(也称为电梯缆绳)来拉动电梯运行。
4. 当电梯到达需要停止的楼层时,曳引机通过减速继电器系统实现电梯的精确停靠。
5. 曳引机还需要配备电梯安全制动器和限速器等装置,确保电梯在电源故障或其他异常情况下,能够迅速停止并保护乘客安全。
浅析电梯曳引原理及提高曳引力的方法摘要:对电梯曳引原理进行了浅析,并进一步对曳引原理中的钢丝绳张力进行了理论推导并和GB/T 7588.2-2020做了对比,指出GB/T 7588.2-2020中未考虑到的影响因素。
最后提出了几种提高曳引力的方法,具有一定的借鉴意义。
关键词:电梯;曳引原理;曳引力;钢丝绳张力1、电梯曳引原理1.1电梯曳引原理浅析电梯按传动系统类型可分为曳引式、强制式、液压式、链条式等电梯,不同传动系统的电梯都具有不同的优缺点。
曳引式电梯作为目前的主流,具有运行性能好、安全、结构简易等特点。
曳引式电梯按照介质类型基本可分为钢丝绳曳引传动、钢带曳引传动,其传动原理基本相同:钢丝绳/钢带均匀缠绕在曳引轮上,由于钢丝绳/钢带张力T在钢丝绳及绳槽之间产生法向力N从而产生摩擦力f(曳引力),原理如图1所示。
图1 钢丝绳曳引原理示意图在曳引轮上取角度的微元,根据微元的受力列平衡微分方程如下[1]。
沿曳引轮切线方向(x轴)平衡微分方程:,由于,上述方程可简化为f=dT--------------------------------------------------------①沿曳引轮径向(y轴)的平衡微分方程:由于,省略二次微元项,上述方程可简化为N=Tdθ----------------②根据摩擦力定义可得f=μef N------------------------------------------------③联立①②③可得,两边同时积分,可得,注意:其中μef为当量摩擦系数。
GB 7588.2-2020对钢丝绳曳引力要求如下[2]::用于轿厢装载和紧急制动工况;:用于轿厢滞留工况(轿厢/对重压在缓冲器上,曳引机空转)。
1.2对电梯的各个工况进行分析1)轿厢装载工况轿厢装载(静载)时不允许发生打滑,否则可能会发生剪切事故。
图2为外力F和摩擦力f的关系,需要保证轿厢装载时不打滑,需保证摩擦力f≤f静,f静为最大静摩擦力,考虑到安全,此时取静摩擦系数下限μ=0.1,式③修正为f≤μef N----------------------④联立①②④可得图2 外力F和摩擦力f关系2)紧急制动工况紧急制动初始阶段电梯钢丝绳/钢带最开始会随着曳引机一起减速,当曳引机减速度继续增大到曳引力不足以提供轿厢和曳引机一起减速所需的力时,钢丝绳/钢带和曳引轮之间会发生打滑。
曳引机故障维修分析报告1. 背景曳引机是电梯系统中的重要组成部分,主要用于控制电梯的运行和停止。
然而,在使用过程中,曳引机可能会出现故障,导致电梯无法正常运行。
本报告旨在对曳引机故障进行详细分析,并提出相应的维修建议。
2. 故障分析2.1 故障现象曳引机故障的主要表现是电梯无法启动或停止过程中突然失效。
具体故障现象包括:•电梯无法启动,按钮无反应。
•电梯在运行过程中突然停止,无法继续运行。
•电梯在运行过程中出现异常声音或振动。
2.2 故障原因根据现场调查和故障现象分析,曳引机故障的主要原因可能包括以下几个方面:2.2.1 电源问题曳引机的正常运行需要稳定的电源供应。
如果电源电压不稳定或供电线路存在问题,可能会导致曳引机无法正常启动或突然停止。
2.2.2 电机故障曳引机的电机是其核心部件,负责提供动力驱动电梯的运行。
电机的故障可能包括绕组短路、电机过热等问题,导致电梯无法正常运行。
2.2.3 传感器故障曳引机中的传感器用于监测电梯的运行状态,如速度、位置等。
如果传感器故障,可能会导致曳引机无法准确感知电梯的状态,从而影响其正常运行。
2.2.4 机械部件故障曳引机中的机械部件包括齿轮、轴承等,如果这些部件损坏或磨损严重,可能导致电梯运行时出现异常声音或振动,甚至无法正常运行。
2.3 故障排除针对曳引机故障的不同原因,可以采取以下排除故障的措施:2.3.1 检查电源供应首先,需要检查电源供应是否正常,包括电压稳定性和供电线路的连接情况。
如果发现电源问题,应及时修复或更换电源设备。
2.3.2 检查电机运行状态对曳引机的电机进行检查,包括检查绕组是否存在短路、电机是否过热等。
如果发现电机故障,应及时修复或更换故障部件。
2.3.3 检查传感器工作情况检查曳引机中的传感器,确保其正常工作。
可以通过检查传感器的连线情况、检测输出信号等方式进行检查,如有问题应及时修复或更换传感器。
2.3.4 检查机械部件状态对曳引机中的机械部件进行检查,包括齿轮、轴承等。
电梯曳引机是电梯的动力设备,又称电梯主机。
功能是输送与传递动力使电梯运行。
它由电动机、制动器、联轴器、减速箱、曳引轮、机架和导向轮及附属盘车手轮等组成。
导向轮一般装在机架或机架下的承重梁上。
盘车手轮有的固定在电机轴上,也有平时挂在附近墙上,使用时再套在电机轴上。
一.按减速方式分类1.有齿轮曳引机:拖动装置的动力,通过中间减速器传递到曳引轮上的曳引机,其中的减速箱通常采用蜗曳引机轮蜗杆传动(也有用斜齿轮传动),这种曳引机用的电动机有交流的,也有直流的,一般用于低速电梯上。
曳引比通常为35:2。
如果曳引机的电动机动力是通过减速箱传到曳引轮上的,称为有齿轮曳引机,一般用于2.5m/s以下的低中速电梯。
2.无齿轮曳引机:拖动装置的动力,不用中间的减速器而是直接传递到曳引轮上的曳引机。
以前这种曳引机大多是直流电动机为动力,现在国内已经研发出来有自主知识产权的交流永磁同步无齿轮曳引机。
曳引比通常是2:1 和1:1。
载重320kg~2000kg,梯速0.3m/s~4.00m/s。
若电动机的动力不通过减速箱而直接传动到曳引轮上则称为无齿轮曳引机,一般用于2.5m/s 以上的高速电梯和超高速电梯。
3.柔性传动机构曳引机二.按驱动电动机分类1,直流曳引机又可分为直流有齿曳引机和直流无齿曳引机.2.交流曳引机又可分为交流有齿曳引机、交流无齿曳引机和永磁曳引机.其中交流曳引机还可细分为:蜗杆副曳引机、圆柱齿轮副曳引机、行星齿轮副曳引机、其他齿轮副曳引机。
三.按用途分类⒈双速客货电梯曳引机⒉VVVF 客梯曳引机⒊杂货曳引机⒋无机房曳引机⒌车辆电梯曳引机四.按速度高低分类⒈低速度曳引机(ν<1米/秒)⒉中速曳引机(快速曳引机)(ν=1米/秒~2 米.秒)⒊高速曳引机(ν=2米/秒~5 米/秒)⒋超高速曳引机(ν>5米/秒)五.按结构形式分类⒈卧式曳引机⒉立式曳引机2 工作原理编辑曳引式电梯曳引驱动关系如图2—2所示。
曳引电梯的工作原理
电梯的曳引机是一个巨大的铁疙瘩,它从电机端通过皮带与曳引轮相连,当电梯开始运行时,曳引电动机通过皮带带动曳引轮旋转,通过一个或几个滑轮与轿厢的导轨相连接,这样轿厢就能沿导轨移动。
电梯在运行过程中,由曳引轮将电梯轿厢的重量传给导轨。
当电梯运行到最高层时,当电梯轿厢重量达到最大允许重量时,曳引电机停止转动,曳引轮停止转动。
此时的电梯轿厢会因为重力而下落到底层。
这时,如果电梯安装在不稳定的基础上(如楼梯上),会引起较大的震动和冲击。
如果安装在较稳定的基础上(如平地),则会使电梯的稳定性受到影响。
为了解决这个问题,一种解决办法是在导轨上安装一个与其等高的支承座(支承座可以是固定的也可以是可移动的)。
这样当电梯轿厢上升时,支承座就能相应地升起;而当电梯轿厢下降时,支承座就能相应地下降。
在这种情况下,当电梯运行到最高层时,由于支承座会相应地下降;而当电梯运行到较低层时,支承座会相应地上升。
—— 1 —1 —。
电梯曳引机分析解析电梯曳引机是电梯的动力设备,又称电梯主机。
功能是输送与传递动力使电梯运行。
它由电动机、制动器、联轴器、减速箱、曳引轮、机架和导向轮及附属盘车手轮等组成。
导向轮一般装在机架或机架下的承重梁上。
盘车手轮有的固定在电机轴上,也有平时挂在附近墙上,使用时再套在电机轴上。
一.按减速方式分类1.有齿轮曳引机:拖动装置的动力,通过中间减速器传递到曳引轮上的曳引机,其中的减速箱通常采用蜗曳引机轮蜗杆传动(也有用斜齿轮传动),这种曳引机用的电动机有交流的,也有直流的,一般用于低速电梯上。
曳引比通常为35:2。
如果曳引机的电动机动力是通过减速箱传到曳引轮上的,称为有齿轮曳引机,一般用于2.5m/s以下的低中速电梯。
2.无齿轮曳引机:拖动装置的动力,不用中间的减速器而是直接传递到曳引轮上的曳引机。
以前这种曳引机大多是直流电动机为动力,现在国内已经研发出来有自主知识产权的交流永磁同步无齿轮曳引机。
曳引比通常是2:1和1:1。
载重320kg~2000kg,梯速0.3m/s~4.00m/s。
若电动机的动力不通过减速箱而直接传动到曳引轮上则称为无齿轮曳引机,一般用于2.5m/s以上的高速电梯和超高速电梯。
3.柔性传动机构曳引机二.按驱动电动机分类1,直流曳引机又可分为直流有齿曳引机和直流无齿曳引机.2.交流曳引机又可分为交流有齿曳引机、交流无齿曳引机和永磁曳引机.其中交流曳引机还可细分为:蜗杆副曳引机、圆柱齿轮副曳引机、行星齿轮副曳引机、其他齿轮副曳引机。
三.按用途分类⒈双速客货电梯曳引机⒉VVVF客梯曳引机⒊杂货曳引机⒋无机房曳引机⒌车辆电梯曳引机四.按速度高低分类⒈低速度曳引机(ν<1米/秒)⒉中速曳引机(快速曳引机)(ν=1米/秒~2米.秒)⒊高速曳引机(ν=2米/秒~5米/秒)⒋超高速曳引机(ν>5米/秒)五.按结构形式分类⒈卧式曳引机⒉立式曳引机2工作原理编辑曳引式电梯曳引驱动关系如图2—2所示。
安装在机房的电动机与减速箱、制动器等组成曳引机,是曳引驱曳引机动的动力。
曳引钢丝绳通过曳引轮一端连接轿厢,一端连接对重装置。
为使井道中的轿厢与对重各自沿井道中导轨运行而不相蹭,曳引机上放置一导向轮使二者分开。
轿厢与对重装置的重力使曳引钢丝绳压紧在曳引轮槽内产生摩擦力。
这样,电动机转动带动曳引轮转动,驱动钢丝绳,拖动轿厢和对重作相对运动。
即轿厢上升,对重下降;对重上升,轿厢下降。
于是,轿厢在井道中沿导轨上、下往复运行,电梯执行垂直运送任务。
轿厢与对重能作相对运动是靠曳引绳和曳引轮间的摩擦力来实现的。
这种力就叫曳引力或驱动力。
运行中电梯轿厢的载荷和轿厢的位置以及运行方向都在变化。
为使电梯在各种情况下都有足够的曳引力,国家标准GB 7588—1995《电梯制造与安装安全规范》规定:曳引条件必须满足:T1/T2×C1×C2≤efα式中:T1/T2——为载有125%额定载荷的轿厢位于最低层站及空轿厢位于最高层站的两种情况下,曳引轮两边的曳引绳较大静拉力与较小静拉力之比。
C1——与加速度、减速度及电梯特殊安装情况有关的系数,一般称为动力系数C2——由于磨损导致曳引轮槽断面变化的影响系数(对半圆或切口槽:C2=1,对V型槽:C2=1.2)。
efα中,f为曳引绳在曳引槽中的当量摩擦系数,α为曳引绳在曳引导轮上的包角。
efα称为曳引系数。
它限定了T1/T2的比值,efα越大,则表明了T1/T2允许值和T1—T2允许值越大,也就表明电梯曳引能力越大。
因此,一台电梯的曳引系数代表了该台电梯的曳引能力。
3安装编辑安装步骤(1)当承重梁在机房楼板下面时,一般需要做一个比曳引机底盘大30mm左右、厚度为250~300mm的钢筋混凝土底座,底座上预埋好固定曳引机的螺栓。
在混凝土底座下面,承重梁的上面应放臵减振橡胶垫,曳引机应固定在混凝土底座上。
混凝土底座与曳引机由压板和挡板固定在一起。
(2)当承重梁在机房楼板上面时,可将曳引机底盘的钢底座与承重梁螺栓连接为一体,如需减振,则应制作减振装臵。
具体方法是制作两块与曳引机底座大小相同、厚20mm左右的钢板,在它们中间放臵减振橡胶垫。
上面的钢板与曳引机用螺栓连接,下面的钢板与承重梁焊接在一起。
为防止位移,上钢板和曳引机底盘还需设臵压板和挡板,如图1—43所示。
(3)承重梁安臵在机房内高出机房楼板600mm的钢筋混凝土台上时,应在台上放臵挡板和减振橡胶垫,并装好上、下连接钢板。
在钢板上固定曳引机,并用压板与挡板定位。
(4)曳引轮安装位臵的校正。
在曳引机上方固定一根水平铅丝,从这根水平铁丝上悬挂两根垂线对准楼面木板上的轿厢架中心点和对重中心点,再根据曳引绳中心计算出曳引轮节圆直径,然后在水平铅丝上相应位臵悬挂另一根铅垂线。
最后再通过这些标准线对曳引机进行校正。
安装的技术要求(1)曳引轮位臵偏差:前、后(向着对重)方向不应超过±2mm,左右方向不应超过±1mm。
(2)曳引轮铅垂度误差不大于2.0mm。
(3)曳引轮与导向轮或复绕轮的平行度误差不大于±1mm[1]。
4影响因素编辑平衡系数由于曳引力是轿厢与对重的重力共同通过曳引绳作用于曳引轮绳槽上产生的,对重是曳引绳与曳引轮绳槽曳引机产生摩擦力的必要条件。
有了它,就易于使轿厢重量与有效载荷的重量保持平衡,这样也可以在电梯运行时,降低传动装置功率消耗。
因此对重又称平衡重,相对于轿厢悬挂在曳引轮的另一端,起到平衡轿厢重量的作用。
当轿厢侧重量与对重侧重量相等时,T1=T2,若不考虑钢丝绳重量的变化,曳引机只需克服各种摩擦阻力就能轻松的运行。
但实际上轿厢的重量随着货物(乘客)的变化而变化,因此固定的对重不可能在各种载荷下都完全平衡轿厢的重量。
因此对重的轻重匹配将直接影响到曳引力和传动功率。
为使电梯满载和空载情况下,其负载转矩绝对值基本相等,国标规定平衡系数K=0.4~0.5,即对重平衡40%~50%额定载荷。
故对重侧的总重量应等于轿厢自重加上0.4~0.5倍的额定载重量。
此0.4~0.5即为平衡系数。
当K=0.5时,电梯在半载时,其负载转矩为零。
轿厢与对重完全平衡,电梯处于最佳工作状态。
而电梯负载自空载(空载)至额定载荷(满载)之间变化时,反映在曳引轮上的转矩变化只有土50%,减少了能量消耗,降低了曳引机的负担。
当量摩擦系数f与绳槽形状曳引绳与曳引轮不同形状绳槽接触时,所产生的摩擦力是不同的,摩擦力越大则曳引力越大。
从目前使用来看有几种:半圆槽、V型槽、半圆型带切口槽。
半圆槽f最小,用于复绕式曳引轮。
V型轮f最大,并随着开口角的减小而增大,但同时磨损也增大,而对曳引绳磨损并卡绳。
随着磨损会趋于半圆槽。
半圆切口槽f介于二者之间,而其基本不随磨损而变化,目前应用较广。
钢丝绳在绳槽内的润滑也直接影响摩擦系数,只可用绳内油芯的轻微润滑,不可在绳外涂润滑油,以免降低摩擦系数,造成打滑现象,降低曳引力。
曳引绳在曳引轮上的包角包角是指曳引钢丝绳经过绳槽内所接触的弧度,用。
表示包角越大摩擦力越大,即曳引力也随之增大,提曳引机高了电梯的安全性。
增大包角目前主要采用两种方法,一是采用2:1的曳引比,使包角增至180°。
另一种是复绕式(为α1+α2)。
电梯曳引钢丝绳的绕绳方式主要取决于曳引条件,额定载重量和额定速度等因素。
它有多种。
这些绕法也可看成是不同传动方式,不同绕法就有不同的传动速比,也叫曳引比,它是由电梯运行时曳引轮节圆的线速度与轿厢运行速度之比。
钢丝绳在曳引轮上绕的次数可分单绕和复绕,单绕时钢丝绳在曳引轮上只绕过一次,其包角小于或等于180°,而复绕时钢丝绳在曳引轮上绕过二次,其包角大于180°。
5制动器编辑电梯采用的是机一电摩擦型常闭式制动器,所谓常闭式制动器,指机械不工作时制动器制动,机械运转时曳引机松闸。
电梯制动时,依靠机械力的作用,使制动带与制动轮摩擦而产生制动力矩;电梯运行时,依靠电磁力使制动器松闸,因此又称电磁制动器。
根据制动器产生电磁力的线圈工作电流,分为交流电磁制动器和直流电磁制动器。
由于直流电磁制动器制动平稳,体积小,工作可靠,电梯多采用直流电磁制动器。
因此这种制动器的全称是常闭式直流电磁制动器。
制动器是保证电梯安全运行的基本装置,对电梯制动器的要求是:能产生足够的制动力矩,而且制动力矩大小应与曳引机转向无关;制动时对曳引电动机的轴和减速箱的蜗杆轴不应产生附加载荷;当制动器松闸或制动时,要求平稳,而且能满足频繁起、制动的工作要求;制动器应有足够的刚性和强度;制动带有较高的耐磨性和耐热性;结构简单、紧凑、易于调整;应有人工松闸装置;噪声小。
制动器功能基本要求:①当电梯动力电源失电或控制电路电源失电时,制动器能立即进行制动。
②当轿厢载有125%额定载荷并以额定速度运行时,制动器应能使曳引机停止运转。
③电梯正常运行时,制动器应在持续通电情况下保持松开状态;断开制动器的释放电路后,电梯应无附加延迟地被有效制动。
④切断制动器的电流,至少应用两个独立的电气装置来实现。
电梯停止时,如果其中一个接触器的主触点未打开,最迟到下一次运行方向改变时,应防止电梯再运行。
⑤装有手动盘车手轮的电梯曳引机,应能用手松开制动器并需要一持续力去保持其松开状态。
制动器的构造及其工作原理制动器的工作原理:当电梯处于静止状态时,曳引电动机、电磁制动器的线圈中均无电流通过,这时因电磁铁芯间没有吸引力、制动瓦块在制动弹簧压力作用下,将制动轮抱紧,保证电机不旋转;当曳引电动机通电旋转的瞬间,制动电磁铁中的线圈同时通上电流,电磁铁芯迅速磁化吸合,带动制动臂使其制动弹簧受作用力,制动瓦块张开,与制动轮完全脱离,电梯得以运行;当电梯轿厢到达所需停站时,曳引电动机失电、制动电磁铁中的线圈也同时失电,电磁铁芯中的磁力迅速消失,铁芯在制动弹簧的作用下通过制动臂复位,使制动瓦块再次将制动轮抱住,电梯停止工作。
6减速器编辑减速器被用于有齿轮曳引机上。
安装在曳引电动机转轴和曳引轮转轴之间。
减速器(箱)的种类及其特点:蜗杆减速器是由带主动轴的蜗杆与安装在壳体轴承上带从动轴的蜗轮组成,其速比可在18~120范围内,蜗轮的齿数不少于30,其效率不如齿轮减速器,但其结构紧凑,外型尺寸不大。
蜗杆减速器特点:传动比大,噪音小、传动平稳,而且当由蜗轮传动蜗杆时,反效率低,有一定的自锁能力;可以增加电梯制动力矩,增加电梯停车时的安全性。
7联轴器编辑联轴器是连接曳引电动机轴与减速器蜗杆轴的装置,用以传递由一根轴延续到另一根轴上的扭矩,又是制动器装置的制动轮。
在曳引电动机轴端与减速器蜗杆轴端的会合处。
电动机轴与减速器蜗杆轴是在同一轴线上,当电动机旋转时带动蜗杆轴也旋转,但是两者是两个不同的部件,需要用合适的方法把它们连接在同一轴线上,保持一定要求的同轴度。