幅相频率特性
- 格式:ppt
- 大小:530.50 KB
- 文档页数:13
电路的幅频特性和相频特性公式幅频特性和相频特性怎么计算幅频特性计算方法:幅频特性=w/(根号下(w平方+1))。
G(jω)称为频率特性,A(ω)是输出信号的幅值与输入信号幅值之比,称为幅频特性。
Φ(ω)是输出信号的相角与输入信号的相角之差,称为相频特性。
相移角度随频率变化的特性叫相频特性。
相频特性=arctan w/0 - arctanw/1=pi/2 - arctanw=arctan 1/w可总结为:相频特性=arctan分子虚部/分子实部-arctan分母虚部/分母实部。
ps:忘了打括号,大家意会就行。
幅频特性计算方法:幅频特性=w/(根号下(w平方+1))可总结为幅频特性=根号下((分子实部平方+分子虚部平方)/(分母实部平方+分母虚部平方))。
频率响应是控制系统对正弦输入信号的稳态正弦响应。
即一个稳定的线性定常系统,在正弦信号的作用下,稳态时输出仍是一个与输入同频率的正弦信号,且稳态输出的幅值与相位是输入正弦信号频率的函数。
在电子技术实践中所遇到的信号往往不是单一频率的, 而是在某一段频率范围内, 在放大电路、滤波电路及谐振电路等几乎所有的电子电路和设备中都含有电抗性元件, 由于它们在各种频率下的电抗值是不相同的, 因而电信号在通过这些电子电路和设备的过程中。
其幅度和相位发生了变化, 亦即是使电信号在传输过程中发生了失真,这种失真有时候是我们需要的, 而有时候是不需要的, 而且必须加以克服。
模电里的幅频特性,和相频特性公式是怎么推导的?通分出来的。
只要会推带电容电导电路的电压比,记住j^2=-1,Z (c)=1/jwc,Z(L)=jwl。
按复数运算规则推就行了。
就是把传递函数的s用jw替掉。
j是虚数单位(和数学上的i一样,工程中习惯用j),w是正弦信zhi号的角频率。
整个运算的结果是一个复数,这个复数的模就是幅频特性A(w),复数的辐角就是相频特性fai(w)。
幅频特性是输出正弦信号和输入正弦信号的幅值比,相频特性是输出正弦信号和输入正弦信号的相位差,正的话输出相位比输入相位超前,负的话输出比输入滞后。
1、频率响应法
•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些
变化规律就能得出关于系统运动的性能指标。
•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。
另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。
该方法具有很高的工程价值,深受工程技术人员欢迎。
6 频率响应分析法2
2、频率特性的图示方法
•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:
1.幅相频率特性(奈氏图)
2.对数频率特性(Bode图)
3.对数幅相特性(尼氏图)
6 频率响应分析法5
2.1 幅相频率特性图
•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。
G(jω)=x(ω)+ j y(ω)
ω:0→+∞
6 频率响应分析法6。
第5章线性系统的频域分析法5.1复习笔记本章考点:幅相特性曲线、伯德图的绘制,奈奎斯特稳定判据,稳定裕度计算。
一、频率特性1.定义幅频特性:稳态响应的幅值与输入信号的幅值之比A(ω)。
相频特性:稳态响应与正弦输入信号的相位差φ(ω)。
频率特性:幅频特性和相频特性在复平面上构成的一个完整向量G(jω)=A(ω)e jφ(ω)。
2.频率特性的几何表示法(重点)(1)幅相频率特性曲线(幅相曲线或极坐标图),横坐标为开环频率特性的实部,纵坐标为虚部, 为参变量。
(2)对数频率特性曲线(伯德图),由对数幅频特性曲线、对数幅相频特性曲线两幅图组成:①对数幅频特性曲线的纵坐标表示L(ω)=20lgA(ω),单位是分贝,记作dB;②对数相频特性曲线的纵坐标为φ(ω),单位为度“°”。
(3)对数幅相曲线(尼科尔斯图),横坐标表示频率特性的相角φ(ω),纵坐标表示频率特性的幅值的分贝数L(ω)=20lgA(ω)。
二、典型环节与开环系统的频率特性1.典型环节的频率特性一些主要典型环节的频率特性曲线总结如表5-1-1所示。
表5-1-1典型环节频率特性曲线总结2.开环幅相曲线绘制步骤(1)确定开环幅相曲线的起点(ω=0+)和终点(ω=∞),确定幅值变化与相角变化。
(2)计算开环幅相曲线与实轴的交点。
令Im[G(jωx)H(jωx)]=0或φ(ωx)=∠G(jωx)H(jωx)=kπ(k=0,±1,…)称ωx为穿越频率,而开环频率特性曲线与实轴交点的坐标值为Re[G(jωx)H(jωx)]=G(jωx)H(jωx)。
(3)分析开环幅相曲线的变化范围(象限、单调性)。
3.开环对数频率特性曲线绘制步骤(1)开环传递函数典型环节分解并确定一阶环节、二阶环节的交接频率;(2)绘制低频段渐近特性线:在ω<ωmin频段内,直线斜率为-20vdB/dec;(3)作ω≥ωmin频段渐近特性线,交接频率点处斜率变化表如表5-1-2所示。
第五章频率特性1.本章的教学要求1) 掌握频率特性的基本概念、性质及求取方法;2) 掌握典型环节及系统的频率特性图一奈奎斯特(Nyquist)图的绘制方法;3) 掌握典型环节及系统的对数频率特性图一波德图(Bode)图的绘制方法;4) 使学生掌握频率特性的实验测定法。
5) 使学生掌握奈奎斯特( N yq u i st )稳定性判据应用;6) 掌握对数频率稳定性判据( Bode 判据)应用;7) 掌握相对稳定性的基本概念,相位裕量Y、幅值裕量K g定义、计算、在Nyquist 图与Bode 图上的表示。
2.本章讲授的重点本章讲授的重点是掌握频率特性的基本概念、求取方法;奈奎斯特(Nyquist) 图的绘制方法;波德图(Bode)图的绘制方法;利用频率特性分析控制系统。
3.本章的教学安排本课程预计讲授14 个学时第一讲5.1 频率特性1.主要内容:1) 频率响应和频率特性2) 频率特性的求取方法3) 频率特性的表示方法2.讲授方法及讲授重点:本讲首先给出频率响应定义,用图说明线性系统稳态响应曲线的特点,由此引出幅频特性、相频特性的概念,然后给出频率特性的定义及数学表达式,利用图及公式说明幅频特性、相频特性、实频特性、虚频特性的关系。
在介绍频率特性的求取方法时,首先说明频率特性一般有三种求法:利用定义求取、根据系统的传递函数来求取、通过实验测得。
在此主要说明和推导根据系统的传递函数来求取的方法, 第三种方法后面介绍。
在介绍频率特性的表示方法时,首先说明频率特性的表示方法主要有如下几种:幅频特性和相频特性图、幅相频率特性图、对数频率特性图、对数幅相频率特性图、实频特性图和虚频特性图,分别简单介绍各自特点,然后强调本章重点介绍幅相频率特性(Nyquist) 图和对数频率特性(Bode) 图。
3.教学手段:Powerpoint 课件与黑板讲授相结合。
4.注意事项:在讲授本讲时,频率特性概念比较抽象,同学不好理解,但此概念在本门课中又非常重要,可以联系实际举几个简单例子说明此概念。
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。