空间插值方法大致总结
- 格式:doc
- 大小:35.50 KB
- 文档页数:6
空间数据分析方法有哪些(二)引言概述空间数据分析是一种重要的数据分析方法,在众多领域包括城市规划、地理信息系统、环境管理和农业等方面具有广泛应用。
本文将就空间数据分析方法进行详细的介绍和阐述,希望能够帮助读者更好地了解和运用这些方法。
正文内容一、地理分析工具1. 空间插值方法- 空间插值方法是一种将已知数据点的值推断到未知区域的方法。
常用的空间插值方法有反距离权重法、克里金法和径向基函数插值法。
这些方法可以通过数学模型推断出未知区域的值,从而帮助分析人员进行更加准确的决策。
- 反距离权重法假设周围已知点的权重与距离的倒数成正比,通过加权平均的方式来估计未知点的值。
克里金法则基于空间半变异函数对已知点进行插值,可以得到更加平滑的结果。
径向基函数插值法则使用基函数对已知点进行插值,可以灵活地应用于不同类型的数据。
2. 空间聚类方法- 空间聚类方法是对空间数据进行聚类分析的方法。
常用的空间聚类方法有基于密度的聚类和基于网格的聚类。
基于密度的聚类方法将空间数据划分为高密度和低密度区域,从而得到聚类结果。
基于网格的聚类方法则将空间数据划分为网格,并且根据网格内数据的特征进行聚类分析。
- 空间聚类方法在城市规划和地理信息系统等领域具有重要的应用。
通过空间聚类,可以发现具有相似特征的空间对象,从而更好地理解和分析空间数据。
3. 空间相关性分析- 空间相关性分析是研究空间数据之间关系的分析方法。
常用的空间相关性分析方法有空间自相关分析和空间回归分析。
空间自相关分析可以帮助分析人员理解空间数据的空间分布模式,了解空间数据之间的依赖关系。
空间回归分析则是研究空间数据之间的线性关系,并进行回归分析。
- 空间数据的相关性分析可以帮助分析人员发现隐藏在数据背后的规律和关系,从而做出更加准确的决策。
4. 空间网络分析- 空间网络分析是研究网络结构和空间数据之间关系的分析方法。
常用的空间网络分析方法有路径分析、中心性分析和聚类分析。
ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。
可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。
2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。
在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。
前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。
3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。
样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。
4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。
这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。
这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。
地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。
Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
空间插值方法在地理信息系统中的应用空间插值是地理信息系统中常用的技术之一,它可以通过在不同位置上采集的数据来推断出其他位置的数值。
利用空间插值方法,我们可以填补数据缺失的区域,生成光滑的表面模型,甚至可以预测未来的趋势变化。
本文将探讨空间插值方法在地理信息系统中的应用。
一、插值方法概述空间插值方法主要用于处理地理空间数据,包括地表高程、气象数据、土壤含水量等等。
常用的插值方法包括:反距离加权法(IDW)、克里金插值法、双线性插值法、三次样条插值法等。
每种插值方法都有其适用的场景和优势,因此在具体应用中需要根据数据特点选择合适的插值方法。
二、地表高程插值地表高程是地理信息系统中常用的数据类型之一。
通过地表高程插值,可以生成数字高程模型(DEM)或栅格地形模型(DTM),以便进行地形分析、洪水模拟、土地规划等工作。
其中,克里金插值法是广泛应用于地表高程插值的方法之一。
它通过对不同点之间的空间关系进行建模,可以根据点数据的空间分布来估计未知点的数值。
三、气象数据插值气象数据的插值通常用于填补气象观测站点之间的数据空缺,以便进行气候分析、天气预测等工作。
常用的插值方法包括:反距离加权法和克里金插值法。
在气象数据插值中,需要考虑到气象数据的时空特性,并根据气象站点的分布情况进行合理的插值方法选择。
四、土壤含水量插值土壤含水量是农业生产和水文模拟中的重要参数。
通过土壤含水量的插值,可以了解土壤水分分布的空间变化规律,优化灌溉策略,预测作物的生长情况。
反距离加权法和克里金插值法都可以用于土壤含水量的插值,但需要根据具体的目标和数据特点进行选择和调整。
五、应用案例以某城市的高程数据为例,通过采集大量地面高程数据点,并借助插值方法生成了该城市的数字高程模型。
在此基础上,我们可以进行地形分析,如制图、等高线生成等。
同时,根据插值结果可以生成三维地形模型,以实现虚拟飞行、景观分析等功能。
在气象数据插值方面,以某地区的气象观测数据为基础,利用克里金插值法填补了数据缺失区域。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!
--------------------------------
所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取
空间数据插值方法的基本原理:
任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)
➢
由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢
无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析
⏹
趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹
根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
趋势面分析中,将Z值分解成如下等式:
➢
由于空间数据不具备重复抽样条件,所以通常将后两项合并。
趋势值即回归值,而后两项将合并到拟合残差中。
➢
在趋势面拟合中,空间位置以平面坐标为佳,即将经纬度坐标转换为以米为单位的平面大地坐标。
➢
通常趋势面分析用于分析趋势和异常而不追求高的拟合精度,一般达到60-80%,阶数在1-4之间即可。
拟合精度按R^2系数和F值检验。
由上述可知,趋势面分析是经典统计学在点数据进行空间展面上的应用,属于全局多项式插值,即对整个研究区域用一个多项式进行拟合。
它的缺点在于:当研究区域范围较大,地形很复杂时,需要用高阶多项式拟合以提高精度,但高阶将增加其计算成本,因而需要进行改进。
常用的空间数据插值方法之二:局部多项式插值
局部多项式插值(Local Polynomial Interpolation):用多个多项式进行拟合。
每个多项式都只在特定重叠的邻近区域内有效,通过设定搜索半径和方向的来定义邻近区域。
显然,局部多项式插值是对全局多项式,即趋势面拟合的一大改进。
这里涉及到一个搜索邻域的概念。
空间数据插值之邻近区域:
⏹
从空间自相关性的概念可知,空间上越靠近,属性就越相似,相关性也越高。
那么,两个样点间在多远的距离内所具备相关性可以不考虑,或者其相关将消失呢?可以根据经验或专业背景找出这么一个阈值,作为邻近区域的半径。
⏹
同时,如果其自相关性在不同的方向上消失的距离值也不同的话,将还需要设置一个方向值以及长短两个半径值,此时的邻近区域将呈椭圆。
(如当属性值受风向影响较大时,应当将风向角度设置为搜索方向,即长半径所在的方向)
⏹
通过半径和方向可以定义出一个以待估点为中心的区域(圆或者椭圆)。
⏹
此外,还可以通过限制参与某待估点值进行预测的样点数来定义邻近区域。
即参与某点预测的最多样点数和最少样点数。
⏹
在由半径和方向决定的区域内包含到的样点数为0时,则扩大搜索区域使其达到最小样点数值。
空间数据插值之各向异性:
在设定邻近区域时,提到了一个方向参数。
即当空间相关性沿各个方向上的消失距离都一致时,其邻近区域应该是一个圆,如图a,叫各向同性。
否则,如图b,在西南-东北方向上的消失距离明显小于东南-西北方向,则其邻近区域应当是一个平行于东南-西北方向的椭圆,其方向角度(Angle Direction)设为长轴与X轴的角度值。
图b的现象即各向异性(Anisotropy)。
(图片来源:Arcgis Desjktop Help文件)图中的Range(变程)参数,即自相关消失或不予考虑的半径值。
图b中的Minor Range,最小变程,即相关性消失得最快的方向上的半径值,而Major Range,最大变程即相关性消失最慢的方向上的半径值。
常用的空间数据插值方法之三:移动平均插值法(Moving Average)
移动平均插值法,通过设定邻近区域,取该区域内样点的平均值作为待估点的值。
适用于样点分布均匀、密集,而且变化缓慢的情况下,对缺失值进行填补。
主要用于消除随机干扰,即局部降噪功能。
优势在于计算简便快速,但适用范围较窄。
常用的空间数据插值方法之四:线性三角网法(Triangulaion with Linear Interpolation)
线性三角网法是最佳的Delaunay三角形,连续样点数据间的连线形成三角形,覆盖整个研究区域,所有三角形的边都不相交。
(即与构建TIN文件的原理一致)
线性三角网法将在整个研究区域内均匀分配数据,地图上的稀疏区域会形成截然不同的三角面。
常用的空间数据插值方法之五:最近邻点插值法(Nearest Neighbor)
最近邻点插值法,又称泰森多边形(Thiessen或Voronoi多边形)分析法。
即在每个样点数据周边生成一个邻近区域,即Thiessen多边形,使得每个多边形内的任意一点离其内部的样点最近,在多边形内插值时只有其中心样点参与运算,如图:
最近邻点插值法同样只适用于样点分布均匀、紧密完整,且只有少数缺失值时,对缺失值进行填补
常用的空间数据插值方法之六:自然邻近插值法(Natural Neighbor)
自然邻近插值法是对泰森多边形插值法的改进。
它对研究区域内各点都赋予一个权重系数,插值时使用邻点的权重平均值决定待估点的权重。
每完成一次估值就将新值纳入原样点数据集重新计算泰松多边形并重新赋权重,再对下一待估点进行估值运算。
对于由样点数据展面生成栅格数据而言,通过设置栅格大小(cell size)来决定自然邻近插值中的泰森多边形的运行次数n,即,设整个研究区域的面积area,则有:n=area/cell size
可设置各向异性参数(半径和方向)来辅助权重系数的计算。
常用的空间数据插值方法之七:反距离权重插值法(Inverse Distance Weighting, IDW)
反距离权重插值综合了泰森多边形的自然邻近法和多元回归渐变方法的长处,在插值时为待估点Z值为邻近区域内所有数据点都的距离加权平均值,当有各向异性时,还要考虑方向权重。
权重函数与待估点到样点间的距离的U次幂成反比,即随着距离增大,权重呈幂函数递减。
且对某待估点而言,其所有邻域的样点数的权重和为1。
决定反距离权重插值法结果的参数包括距离的U次幂值的确定,同时还取决于确定邻近区域的所使用的方法。
此外,为消除样点数据的不均匀分布的影响,还可设置引入一个平滑参数,以保证没有哪个样点被赋予全部的权重,即使得插值运算时尽可能不只有一个样点参与运算。
IDW是一种全局插值法,即全部样点都参与某一待估点的Z值的估算;
IDW的适用于呈均匀分布且密集程度足以反映局部差异的样点数据集;
IDW与之前介绍的插值法的不同之处在于,它是一种精确的插值法,即插值生成的表面中预测的样点值与实测样点值完全相等。
常用的空间数据插值方法之八:最小曲率法(Minimum Curvature)
最小曲率插值法,非精确插值法。
其插值基准是生成一个具有最小曲率(即弯曲度最小),且到各样点的Z值的距离最小的曲面。
影响最小曲率插值法精度的参数有:
最大残差,通常允许残差在10%-1%之间
最大循环次数,与栅格大小(cell size)有关,通常设置为生成的栅格数量的一到两倍。
常用的空间数据插值方法之九:径向基函数插值法(Radial Basis Function)
所谓径向基函数即基函数是由单个变量的函数构成的,是一系列精确插值法的统称。
该插值法中的单个变量是指待估点到样点间的距离H,其中每一插值法都是距离H的基函数。
径向基函数是对最小曲率插值的改进,即属于精确的最小曲率插值法。
径向基函数包括的多种函数有:倒转复二次函数(InverseMultiquadric),复对数(Multilog),复二次函数(Multiquadratic),自然三次样条函数(Natural CubicSpline),薄板样条法函数(Thin Plate Spline);
上述的每一函数式中都带有一个平滑因子R,即使得生成的曲面不至于太粗糙。
在实际应用中,许多人都发现复二次函数的效果最佳。