运动控制课程设计最终版本
- 格式:docx
- 大小:451.24 KB
- 文档页数:21
运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
运动控制系统课程设计第1章绪论1.1设计目的和意义1.2设计任务第2章双闭环直流脉宽调速系统的原理设计2.1 方案选定2.2 桥式可逆PWM变换器的工作原理2.3 双闭环直流调速系统的静特性分析2.4 双闭环直流调速系统的稳态构造图第3章双闭环直流脉宽调速系统的硬件电路设计3.1 硬件构造3.1.1 主电路3.1.2 泵升电压限制3.2 主电路参数计算和元件选择3.2.1 整流二极管的选择3.2.2 绝缘栅双极晶体管的选择3.3 调节器参数设计和选择3.3.1调节器工程设计方法的根本思路3.3.2 电流环的设计3.3.2.1 确定时间常数3.3.2.2 选择电流调节器构造3.3.2.3 选择电流调节器参数3.3.2.4 校验近似条件3.3.2.5 计算ACR的电阻和电容3.3.3 转速环的设计3.3.3.1 确定时间常数3.3.3.2 ASR构造设计3.3.3.3 选择ASR参数3.3.3.4 校验近似条件3.3.3.5 计算ASR电阻和电容3.3.3.6 检验转速超调量3.3.3.7 校验过渡过程时间3.4 反应单元3.4.1 转速检测装置选择3.4.2 电流检测单元3.5 系统动态构造图第4章系统仿真总结参考文献第1章绪论电动机作为最主要的动力源和运动源之一,在生产和生活中占有十分重要的地位。
电动机的调速控制方法过去多用模拟法,随着单片机的产生和开展以及新型自关断元器件的不断涌现,电动机的控制也发生了深刻的变化[1]。
1.1设计目的和意义〔1〕、通过对电力拖动控制系统的设计,了解电力电子、自动控制原理及电力拖动自动控制系统课程所学容,初步具备设计电力拖动自动控制系统的能力,为今后从事技术工作打下必要的根底。
〔2〕、运用?电力拖动控制系统?的理论知识设计出满足任务书要求的直流调速系统,通过建模、仿真验证理论分析的正确性。
1.2设计任务〔1〕总体方案确实定;〔2〕主电路原理及波形分析、元件选择、参数计算;〔3〕系统原理图、稳态构造图、动态构造图;〔4〕电流环、转速环的参数的设计;〔5〕根据电流环、转速环的参数构建仿真模型;〔6〕进展MATLAB仿真;第2章双闭环直流脉宽调速系统的原理设计2.1 方案选定直流双闭环调速系统的构造图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM 装置。
《运动控制系统》课程设计学院:物联网工程学院班级:自动化姓名:学号:日期: 2015.6.15-2015.6.21成绩:目录1直接转矩控制的基本原理及特点--------------------------错误!未定义书签。
1.1直接转矩控制系统原理 --------------------------错误!未定义书签。
1.2直接转矩控制系统的特点-------------------------4 2直接转矩控制的计算模型--------------------------------错误!未定义书签。
2.1定子磁链计算模型------------------ 错误!未定义书签。
2.2转矩计算模型 -----------------------------------53直接转矩控制系统的SIMULINK仿真模型-------------------53.1磁链和转矩调节器仿真模块------------------------53.2转速调节器仿真模块------------------------------63.3电压矢量选择仿真模块----------------------------63.4 3/2变换仿真模块-------------------------------73.5电机模型仿真模块--------------------------------73.6转矩计算模型仿真模块----------------------------83.7 K/P变换仿真模型模块----------------------------83.8磁链选择模块------------------------------------94比较直接转矩控制系统的仿真波形------------------------95总结和展望-------------------------------------------121直接转矩控制的基本原理及特点直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
plc运动控制技术课程设计一、课程目标知识目标:1. 让学生掌握PLC(可编程逻辑控制器)的基本原理和运动控制技术的基础知识。
2. 使学生了解并能够解释PLC在工业运动控制中的应用场景和优势。
3. 让学生掌握PLC编程中与运动控制相关的基本指令和编程逻辑。
技能目标:1. 培养学生能够运用PLC进行简单的运动控制系统的设计、编程和调试能力。
2. 培养学生通过分析实际运动控制需求,设计出合理的PLC控制方案的能力。
3. 提高学生团队协作能力和实际问题解决能力,能在小组项目中有效沟通和协作。
情感态度价值观目标:1. 培养学生对PLC运动控制技术产生浓厚的兴趣,激发学生探究工业自动化领域的热情。
2. 培养学生具有创新意识和实践精神,敢于面对挑战,勇于尝试新的解决方案。
3. 培养学生严谨的科学态度和良好的工程伦理观,认识到技术在生产生活中的重要性和责任感。
课程性质:本课程为实践性较强的课程,以理论讲授和实验操作相结合的方式进行。
学生特点:学生具备一定的电气基础和编程知识,具有较强的动手能力和好奇心。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,培养学生的创新能力和实际操作技能。
在教学过程中,将课程目标分解为具体可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,对应教材第一章内容。
2. PLC编程基础:讲解PLC编程语言、基本指令、编程逻辑,对应教材第二章内容。
3. 运动控制基础:介绍运动控制的基本概念、类型和常用的运动控制器件,对应教材第三章内容。
4. PLC在运动控制中的应用:分析实际应用案例,讲解PLC在运动控制中的接线方式、程序设计方法等,对应教材第四章内容。
5. 运动控制系统的设计与调试:学习运动控制系统的设计步骤、调试方法及故障排查技巧,对应教材第五章内容。
6. 实践操作:安排学生进行实验操作,包括PLC编程、运动控制系统的搭建和调试,结合教材附录中的实验指导书进行。
宿迁学院运动控制课程设计一、课程目标知识目标:1. 理解运动控制的基本概念,掌握运动控制系统的组成及其工作原理;2. 学会分析运动控制系统的数学模型,理解不同运动控制算法的优缺点;3. 掌握运动控制编程的基本方法,能够运用所学知识解决实际运动控制问题。
技能目标:1. 能够运用所学理论知识,设计简单的运动控制系统;2. 掌握运动控制系统的调试与优化方法,提高系统性能;3. 培养团队协作能力,学会与他人共同分析、解决问题。
情感态度价值观目标:1. 培养学生对运动控制技术的兴趣,激发其探索精神和创新意识;2. 增强学生面对工程问题的责任感,培养严谨、务实的科学态度;3. 提高学生的环保意识,使其在设计运动控制系统时注重节能、减排。
课程性质:本课程为宿迁学院电气工程及其自动化专业核心课程,旨在培养学生掌握运动控制技术的基本理论、方法及其应用。
学生特点:学生已具备一定的电路分析、信号处理和控制理论基础知识,具有较强的逻辑思维能力和动手能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化动手实践能力培养,提高学生解决实际工程问题的能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和工程实践打下坚实基础。
二、教学内容1. 运动控制概述- 运动控制基本概念与分类- 运动控制系统的发展与应用2. 运动控制系统组成及工作原理- 电机及其驱动器- 传感器与执行器- 控制器及其算法3. 运动控制数学模型- 电机数学模型- 传动系统数学模型- 控制系统数学模型4. 常见运动控制算法- PID控制- 位置控制- 速度控制- 矢量控制5. 运动控制编程与实现- 编程环境与工具- 控制算法编程实现- 运动控制程序调试与优化6. 运动控制系统设计实例- 系统需求分析- 控制器选型与参数配置- 系统集成与调试7. 运动控制技术发展趋势- 智能化运动控制- 网络化运动控制- 绿色运动控制本教学内容根据课程目标制定,涵盖运动控制基本概念、系统组成、数学模型、常见算法、编程实现、设计实例及发展趋势等方面,注重科学性和系统性。
《运动控制系统课程设计》《运动控制系统》课程设计一、性质和目的自动化专业、电气工程及其自动化专业的专业课,在学完本课程理论部分之后,通过课程设计使学生巩固本课程所学的理论知识,提高学生的综合运用所学知识,获取工程设计技能的能力;综合计算及编写报告的能力。
二、设计内容1.根据指导教师所下达的《课程设计任务书》课程设计。
2.主要设计内容包括:(1)根据任务书要求确定总体设计方案(2)主电路设计:主电路结构设计(结构选择、器件选型、考虑器件的保护)、变压器的选型设计;(3)控制电路设计:控制方案的选择、控制器设计(4)保护电路的选择和设计(5)调速系统的设计原理图,调速性能分析、调速特点3.编写详细的课程设计说明书一份,并画出调速系统的原理图。
三、设计目的1.熟练掌握主电路结构选择方法、主电路元器件的选型计算方法。
2.熟练掌握保护方式的配置及其整定计算。
3.掌握触发控制电路的设计选型方法。
4.掌握速度调节器、电流调节器的典型设计方法。
5.掌握绘制系统电路图绘制方法。
6.掌握说明书的书写方法。
四、对设计成品的要求1.图纸的要求:1)图纸要符合国家电气工程制图标准;2)图纸大小规范化;3)布局合理、美观。
2.对设计说明书的要求1)说明书中应包括如下内容①目录②课题设计任务书;③调速方案的论证分析(从经济性能和技术性能方面进行分析论证)和选择;④所要完成的设计内容⑤变压器的接线方式确定和选型;⑥主电路元器件的选型计算过程及结果;⑦控制电路、保护电路的选型和设计;⑧调速系统的总结线图系统电路设计及结果。
2)说明书的书写要求①文字简明扼要,理论正确,程序功能完备,框图清楚明了。
②字迹工整;书写整齐,参照教务系统中的毕业论文的格式要求。
直流电机调速系统设计任务书1组:直流他励电动机:功率P N=1.1kW,额定电压U N=220V,额定电流I N=6.7A,磁极对数P=1,n N=1500r/min,励磁电压220V,电枢绕组电阻R a=2.34Ω,主电路总电阻R=7Ω,L∑=246.25mH(电枢电感、平波电感和变压器电感之和),K s=58.4,机电时间常数T m=116.2ms,滤波时间常数T on=T oi=0.00235s,过载倍数λ=1.5,电流给定最大值U im*=10V,速度给定最大值U n*=10V。
目录前言第一章龙门刨床的生产工艺和控制特点 (1)第二章总体方案设计 (4)2.1 龙门刨床电气控制系统的设计 (4)2.2总体方案设计 (4)2.3设计方案的选择 (5)2.3.1直流调速系统原理 (5)2.3.2 直流电动机的调速方案 (6)2.3.3调压调速主回路的选择 (7)2.3.4直流电动机的控制 (8)2.3.5触发电路的选择 (9)第三章调速系统主回路的设计 (10)3.1主回路的电气原理图 (10)3.2工作原理分析 (10)3.3主回路参数计算 (11)3.3.1确定变压器的参数 (11)3.3.2可控硅元件参数的选择: (12)3.3.3平波电感器的参数计算: (12)3.3.4电动机电枢电感的计算 (12)3.3.5变压器漏电感的计算 (13)3.3.6 保护电路设计与选型 (13)第四章调速系统的控制电路设计 (15)4.1 转速电流双闭环直流调速系统 (15)4.2逻辑无环流可逆直流调速系统 (17)4.2.1可逆调速系统 (17)4.2.2逻辑无环流可逆调速系统原理及结构 (19)4.2.3 DLC的输入要求 (19)第五章调速系统各功能模块的介绍 (21)5.1逻辑装置的组成与分析 (21)5.2各功能模块的实现 (21)5.2.1速度调节器 (21)5.2.2电流调节器 (22)5.2.3电流反馈与过流保护 (23)5.2.4转速变换 (24)5.2.5零速封锁器 (24)5.2.6转矩极性鉴别(DPT) (25)5.2.7零电平检测(DPZ) (26)第六章调速系统的静态计算 (29)6.1调速系统的静态计算 (29)6.1.1系统的静态结构图 (29)6.1.2系统的静态特性 (30)6.2调速系统的动态计算 (31)6.2.1电流调节器的设计 (31)6.2.2转速调节器的设计 (34)第七章控制系统的MATLAB仿真 (38)7.1 MATLAB概述 (38)7.2逻辑无环流双闭环直流调速系统的仿真 (41)结语 (44)参考文献 (45)附一逻辑无环流系统实验报告 (46)附二龙门刨床电气控制系统原理图前言龙门刨床因有一个由顶梁和立柱组成的龙门式框架结构而得名,工作台带着工件通过龙门框架作直线往复运动,多用于加工大平面(尤其是长而窄的平面),也用来加工沟槽或同时加工数个中小零件的平面。
运动控制系统课程设计专业:自动化设计题目:双闭环直流电机调速系统设计班级:学生:学号:11号指导教师:分院院长:教研室主任:电气工程学院一、课程设计任务书1.设计参数直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数Tm=0.0926ms ,滤波时间常数Ton=Toi=0.01s ,过载倍数λ=1.2,电流给定最大值 8V U im =*,速度给定最大值10V U n =* 2.设计容1)根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。
2) 调速系统主电路元部件的确定及其参数计算。
3)驱动控制电路的选型设计。
4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
5) 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。
3.设计要求:1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速围(10D ≥),系统在工作围能稳定工作。
2)系统静特性良好,无静差(静差率2S ≤)。
3)动态性能指标:转速超调量8%nδ<,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1s t s≤。
4)系统在5%负载以上变化的运行围电流连续。
5)调速系统中设置有过电压、过电流保护,并且有制动措施。
6)主电路采用三项全控桥。
4. 课程设计报告要求 1)、要求在课程设计答辩时提交课程设计报告。
2)、报告应包括以下容: A 、系统各环节选型 主回路方案确定。
大连理工大学本科实验报告课程名称:运动控制系统课程设计学院(系):电子信息与电气工程学部专业:自动化班级:0804学号:200881197学生姓名:何韬2011年12月20日一.设计背景无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶。
它一般是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
自上世纪80年代以来在无人驾驶汽车方面各国均取得了很大成就。
1995年,一辆由美国卡耐基梅隆大学研制的无人驾驶汽车Navlab-V,完成了横穿美国东西部的无人驾驶试验。
2005年,美国国防部“大挑战”比赛上,最终由美国斯坦福大学工程师们改装的一辆大众途锐多功能车经过7个半小时的长途跋涉完成了全程障碍赛,第一个到达了终点。
在赛道上,无人驾驶汽车需要穿越沙漠、通过黑暗的隧道、越过泥泞的河床并需要在崎岖险峻的山道上行使,整个行程无人驾驶汽车需要绕过无数个障碍。
1989年,我国首辆智能小车在国防科技大学诞生,2000年6月,国防科技大学研制的第4代无人驾驶汽车试验成功,最高时速达76km,创下国内最高纪录。
二.电动车改造要求(1)实现电动车的速度控制(2)实现电动车的方向盘控制(3)实现电动车的刹车控制(4)实现电动车的前进和后退控制(5)采用RS485通信协议三.设计思路1.速度控制要求:速度控制分5个档位,从0开始,每一千欧一档,利用单片机进行控制,开关量输出,上拉电阻阻值为4.7kΩ。
这一小节是利用单片机对输出端开关量进行控制分别对5个电阻线路的开关用继电器进行控制,从而实现变换档位。
光耦继电器控制开关电路如下图所示上图电路中如果MCS-51的输出端口输出为1时开关打开,0时开关闭合。
在下面的叙述中光耦开关电路比较常用,所以用下面的图标代替,具体电路如上图所示:为了分为5档,每一档都应该有继电器进行开关控制,即为光耦电路,然后利用MCS-51单片机对输出值进行控制。