【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案21 两角和与差的正弦、余弦和正切公式
- 格式:pdf
- 大小:738.96 KB
- 文档页数:10
第四章三角函数与三角恒等变换学案17 任意角的三角函数导学目标: 1.了解任意角的概念.2. 了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.课前准备区回扣载材夯实基础_______________________________________________【自主梳理】1. 任意角的概念角可以看成平面内一条射线OA绕着端点从一个位置旋转到另一个位置0B所成的图形•旋转开始时的射线OA叫做角的____________ ,射线的端点0叫做角的__________ ,旋转终止位置的射线0B叫做角的__________ ,按_______ 时针方向旋转所形成的角叫做正角,按______ 时针方向旋转所形成的角叫做负角.若一条射线没作任何旋转,称它形成了一个________ 角.(1) 象限角使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是___________ 角.(2) 象限界角(即终边在坐标轴上的角)终边在x轴上的角表示为________________________ ;终边在y轴上的角表示为________________________________________________ ;终边落在坐标轴上的角可表示为_________________________________ .(3) 终边相同的角所有与角a终边相同的角,连同角a在内,可构成一个集合_________________________ 或____________________________ ,前者a用角度制表示,后者a用弧度制表示.(4) 弧度制把长度等于_________ 长的弧所对的 ____________ 叫1弧度的角.以弧度作为单位来度量角的单位制,叫做_________ ,它的单位符号是 ________ ,读作_________ ,通常略去不写.(5) 度与弧度的换算关系360 °=______ r ad; 180 °=___ rad; 1°= _________ rad;1rad = ________________ ~ 57.30 °(6) 弧长公式与扇形面积公式1 = ________ ,即弧长等于_______________________________________________________ .S 扇= ________ = _____________ .2•三角函数的定义任意角的三角函数定义:设a是一个任意角,它的终边与单位圆交于点P(x, y),那么① ___ 叫做a的正弦,记作sin a,即sin a= y;②_______ 叫做a的余弦,记作cos a,即cos a=x;③_________ 叫做a的正切,记作tan a,即tan a=0).x(1) 三角函数值的符号各象限的三角函数值的符号如下图所示,三角函数正值歌:一全正,二正弦,三正切,四余弦.【自我检测】1 a= f” 是“ COS2 a=的 ()6 2A .充分而不必要条件B •必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2. (2018 济宁模拟)点 P (tan2009 / cos2009 )位于 () A .第一象限B .第二象限 C .第三象限D .第四象限3. (2018 山东青岛高三教案质量检测)已知si n a <0且tano>0,则角a 是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2 n 2冗\ 4. 已知角a 的终边上一点的坐标为 Sin — , cos—,则角a 的最小正值为()课堂潘动惬究砒考点硏析热点探究点一角的概念【例1】(1)如果角a 是第三象限角,那么一 a, n — a, n+ a 角的终边落在第几象限;.J +y+ 0XJy)+ -4-OX 0+Xsin a cosa(2)三角函数线下图中有向线段MP , OM , AT 分别表示tana___________________ 和A. 5 n IB.47 47⑵写出终边落在直线y= 1 3x上的角的集合;⑶若0= 168 °+ k 360 °(k€ Z),求在[0 °, 360 °)内终边与f角的终边相同的角.变式迁移1若a是第二象限的角,试分别确定 2 a,扌的终边所在位置.探究点二弧长与扇形面积[例2(2018金华模拟)已知一个扇形的圆心角是a,0<a<2n,其所在圆的半径是R.(1)若a= 60 ° R= 10cm,求扇形的弧长及该弧所在弓形的面积;⑵若扇形的周长是一定值C(C>0),当a为多少弧度时,该扇形有最大面积?变式迁移2 (1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?探究点三三角函数的定义【例3】已知角a的终边在直线3x+ 4y= 0上,求sin a,cos a,tan a的值.变式迁移3已知角a的终边经过点P(- 4a,3a)(a* 0),求sin a,cos a,tan a的值.1. 角的度量由原来的角度制改换为弧度制,要养成用弧度表示角的习惯.象限角的判断,终边相同的角的表示,弧度、弧长公式和扇形面积公式的运用是学习三角函数的基础.2. 三角函数都是以角为自变量(用弧度表示),以比值为函数值的函数,是从实数集到实数集的映射,注意两种定义法,即坐标法和单位圆法.(满分:75分)一、选择题(每小题5分,共25分)1. (2018宣城模拟)点P从(1,0)出发,沿单位圆X2+ y2= 1逆时针方向运动f n弧长到达Q,则Q的坐标为()1 J3 爲1A . (-2,2)B .(-T,-2)1 12. 若0<x< n,则使sinx>2和cosx<2同时成立的x的取值范围是()n n n 5A.3<X<2B.3<X<6nn 5 n 2c.6<x<6 Q3<x<3n3. 已知a为第三象限的角,则扌所在的象限是()A.第一或第二象限B .第二或第三象限C.第一或第三象限 D .第二或第四象限4. 若1弧度的圆心角所对弦长等于2,则这个圆心角所对的弧长等于()1 nA. sin7B.72 61 1C. D. 2sin.1 2 sin 25. 已知卜^,扌且sin 0+ cos0= a,其中a € (0,1),则关于tan B的值,以下四个答案中,可能正确的是()亠1A . —3B. 3 或31 、1C . —3D. —3 或—3题号12345答案二、填空题(每、题4分,共12分)6 .已知点P(sin a—cos a, tan %)在第一象限,且 a € [0,2 n]则a的取值范围是(3n 3 nsin —, cos ■—落在角0的终边上,且值为_________ .&阅读下列命题:①若点P(a,2a)(a^ 0)为角a终边上一点,贝U si n a= 专;5-才的角有且只有一个;V5sin a=—5(0为象限角),则0在第一象限.___ .(将正确命题的序号填在横线上)三、解答题(共38分)9. (12分)已知扇形OAB的圆心角a为120 °半径长为6,(1)求AB的弧长;⑵求弓形OAB的面积.[0,2 n,则0的其中正确命题为1②同时满足sin a= 2,cos a=③设tan a= 2且n<a<3n,贝U④设cos(sin 0) tan(cos 0)>010. (12分)在单位圆中画出适合下列条件的角a的终边的范围,并由此写出角a的集合:(1)sin a i(2)COS a<— 211. (14分)(2018舟山月考)已知角a 终边经过点 P(x , — .2)(X M 0),且cos o=~^x.求1sin a+ 的值.tan a答案自主梳理1•始边顶点终边逆顺零(1)第几象限-1 k j(2){ a|a= k n, k € Z } *a| a= k 计 §, k € Z 广 a| a=才,k € Z 「(3){ 3 3= a + k 360° , k €的圆心角(弧度数)的绝对值与半径的积 弓厲曲勺•①y ②X ③丫 (2) a 的正弦线a 的余弦线 a 的2 2 X正切线自我检测1. A2.D3.C4.D 课堂活动区【例1】解题导引 ⑴一般地,角a 与—a 终边关于X 轴对称;角a 与n — a 终边关于y 轴对 称;角a 与n+ a 终边关于原点对称.⑵利用终边相同的角的集合S ={ 33= 2k n+ a, k 題}判断一个角3所在的象限时,只 需把这个角写成[0,2%)范围内的一角a 与2 n 的整数倍,然后判断角a 的象限.(3)利用终边相同的角的集合可以求适合某些条件的角,方法为先写出与这个角的终边 相同的所有角的集合,然后通过对集合参数k 赋值来求得所需角.3 n解(1) n+ 2k n<o <2 + 2ku(k €), 3 n-•—2 — 2k nJ a < — n — 2k ^(k ),n即 2+ 2k n< a <n+ 2k n (k €).①• —a 角终边在第二象限.3 n又由①各边都加上 n,得~2 + 2k n < — a <2 n+ 2k n (k €).•n— a 是第四象限角.同理可知,n+ a 是第一象限角.⑵在(0, n 内终边在直线 y = -3X 上的角是n , •终边在直线y = 3x 上的角的集合为 J n1Z }{ 3 3= a+ 2k n k € Z } (4)半径圆心角弧度制rad 弧度 (5)2冗命巴0 ° (6)| a| •-弧所对a a= 3+ k n k€ •(3) •••0= 168 °+ k 360 °k€),= 56°+ k -120° (k 題).3••0°< 56°+ k 120°<360°,, 0••k = 0,1,2 时,§q o ° 360° .故在[0 ° 360°内终边与3角的终边相同的角是56° 176°296° 变式迁移1解Ta是第二象限的角,• 360°+ 90° a<k 360°+ 180°(k 題).(1) '.2k 360 °+ 180 °2 a<2k 360 °+ 360 °(k^Z),••2 a的终边在第三或第四象限,或角的终边在y轴的非正半轴上.(2) --k 180 °+ 45 °2<k 180 °+ 90 ° (k^Z),当k = 2n (n®)时,an 360 °+ 45 °<^< n 360 °+ 90 °当k = 2n + 1 (n^Z)时,an 360 °+ 225 °<^< n 360 °+ 270 °a「2■是第一或第三象限的角.a•3的终边在第一或第三象限.【例2】解题导引本题主要考查弧长公式和扇形的面积公式,并与最值问题联系在一起.确定一个扇形需要两个基本条件,因此在解题中应依据题目条件确定出圆心角、半径、弧长三个基本量中的两个,然后再进行求解.解(1)设扇形的弧长为I,该弧所在弓形的面积为S,如图所示,n 当a= 60°= 3,R= 10cm 时,可知I = aR= fm.,. I I 2 刃而S= S 扇一S ZOAB= ?IR —?R sin§⑵已知2R+ l = C,即卩2R+ aR= C,1 2 1 1S 扇=aR = aR R= 4 aR 2R';R+2RZ = 1 f C x 2 = C 2 -^― ! = 4迈丿=活当且仅当 C 2.变式迁移2解设扇形半径为 R ,圆心角为 0所对的弧长为值就相应确定了.但若终边落在某条直线上时,这时终边实际上有两个,因此对应的函数 值有两组,要分别求解.解•••角a 的终边在直线3x + 4y = 0上,•••在角a 的终边上任取一点 P(4t ,— 3t) (t 丰0), 贝U x = 4t , y =— 3t , r = 'x 2+ y 2= ‘4t 2+ — 3t 2=5|t|,当 t>0 时,r = 5t ,y Sin a= r = 5t =x 4t 4 COS a= r =5t =5, tan = y == — 3; tan a= x = 4t = — 4; 当 t<0 时,r = — 5t ,y —3sin a= r = — 5t = 5,x 4tCOS a= _= =—2 0R= 4,(1)依题意,得」R+ 2R = 10,:2 0— 17 0+ 8 =0.「.0= 8 或 1.厶亠 1••8>2n,舍去,• 0= 2.⑵扇形的周长为 40,即0+ 2R = 40,1 1 7 1 八 * 1 0R+ 2R S = [R =2 0R= 4 0R 2R W 4 =100.2当且仅当0R= 2R ,即R = 10, 0= 2时扇形面积取得最大值, 【例3】解题导引某角的三角函数值只与该角终边所在位置有关,最大值为 100.当终边确定时三角函数aR= 2R ,即a= 2时,等号成立,即当 a 为2弧度时,该扇形有最大面积 l.35,4 5,r—5t伽=y=—=— 3 tan a= x= 4t =—4.3 4 3综上可知,t>0 时,sin a=—;, cos a= , tan a=—二;5 5 4z 3 4 3t<0 时,sin a= 5, COS a=—5, tan a= —4.变式迁移 3 解r =—4a 2+ 3a 2= 5RI.若a>0,则r = 5a , a 角在第二象限,y 3a 3 sin a=_=二=匚, r 5a 5—4a 4~5F = — 5,tan a= xy_ 3a =3 = —4.若 a<0, 则 r = — 5a , a 角在第四象限, sin 心 y3a —5a 35, x COS a= 一 r —4a 4 —5^ = 5, 3 —4a *课后练习区 1. A2.B3.D4.C5.C5 n冗,丁tan a= y3a6.解读由已知得sin a>cos a,tan a >0,n n • '4 + 2k n<<2 + 2k n 或 n+ 5 n 2k n<a <"4 +2k n, k^Z.n n 5 n••0< a< 2 n •••当 k = 0 时,;< a <o 或 n<<丁. 4247 7・4n解读由三角函数的定义,cos ‘y4tan 0= ==— 1.x 3 nsin ~43 n 3 n . 7 n 又-.sin[>0, cos_<0,「.P 在第四象限,• 0= _.&③ 解读①中,当a 在第三象限时, sin a=—今5,故①错.5 7n②中,同时满足 sin a= 2 , COs a=于的角为 a= 2k n+ - (k €Z),不只有 错•③正确•④0可能在第一象限或第四象限,故④错•综上选③ ” o 2n 9.解⑴-a= 120 = 3 , r = 6, • AB 的弧长为 I =ar 严>< 6 = 4n •: ................................................................... 1 1 (2) '-S 扇形 OAB =尹=4 n X 6=12 n, ............................................2' ,故②(4分) …(7S ZABO =扩 sin^62X 宁=9 3 , ........................................(10xCOS a=r11 / 9•'S 弓形 OAB = S 扇形 OAB — S ^ABO = 分) 10.解(1)作直线y =~2^交单位圆于A 、n 2n的集合为 1 a|2k n+ aW 2k n+ —, k ».1作直线x =— 2交单位圆于C 、D 两点,连结 OC 、OD ,贝y OC 与OD 围成的区域(图中 阴影部分)即为角a 终边的范围•故满足条件的角a 的集合为2 n 4 n* o|2k n+§三 aW 2k n+-3, k 題•- 11.解-.P (x , — ,2) (x 工 0), •••点P 到原点的距离 r = x 2+ 2.又 亚又 COS a= — X ,6 x V 3 I —「COS a= ------ = tT X.伙工 0 ,「X =± 10 ,V X 2^ 6 , •丫 = 2";.'3 ................................................ 当x = 10时,P 点坐标为(.10, — ,2), 由三角函数的定义, 6有 Sin a=——, (6分)1 • sin a+ =— tan a当 x =— .10时,盘一5, - 5 =-6 .' 5 + ■, 6;(10 分)同样可求得sin a+1 tan a(14 分)(12(6分)(12分)(2则0A 与0B 围成的区域即为角。
学案14 导数在研究函数中的应用导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )>0的解集与定义域的交集的对应区间为______区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )<0的解集与定义域的交集的对应区间为______区间;(3)若在(a ,b )上,f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数,若在(a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数.2.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程________的根;③检查f ′(x )在方程________的根左右值的符号.如果左正右负,那么f (x )在这个根处取得________;如果左负右正,那么f (x )在这个根处取得________.自我检测1.已知f (x )的定义域为R ,f (x )的导函数f ′(x )的图象如图所示,则 ( )A .f (x )在x =1处取得极小值B .f (x )在x =1处取得极大值C .f (x )是R 上的增函数D .f (x )是(-∞,1)上的减函数,(1,+∞)上的增函数2.(2009·广东)函数f (x )=(x -3)e x 的单调递增区间是 ( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 3.(2011·济宁模拟)已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.(2011·福州模拟)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 (2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值 例3 (2011·六安模拟)已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间例 (12分)(2009·辽宁)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.多角度审题 (1)先求导,根据参数a 的值进行分类讨论;(2)若x 1>x 2,结论等价于f (x 1)+x 1>f (x 2)+x 2,若x 1<x 2,问题等价于f (x 1)+x 1<f (x 2)+x 2,故问题等价于y =f (x )+x 是单调增函数.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =(x -1)(x +1-a )x.[2分]①若a -1=1,即a =2时,f ′(x )=(x -1)2x.故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[6分](2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x .则g ′(x )=x -(a -1)+a -1x ≥2x ·a -1x-(a -1)=1-(a -1-1)2.由于1<a <5,故g ′(x )>0,即g (x )在(0,+∞)上单调递增,从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0,即f (x 1)-f (x 2)+x 1-x 2>0,故f (x 1)-f (x 2)x 1-x 2>-1.[10分]当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.[12分]当堂检测(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大连模拟)设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( )A .1个B .2个C .3个D .4个3.(2011·嘉兴模拟)若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <14.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则 ( ) A .a >-3 B .a <-3C .a >-1D .a <-16.(2009·辽宁)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(12分)(2011·秦皇岛模拟)已知a为实数,且函数f(x)=(x2-4)(x-a).(1)求导函数f′(x);(2)若f′(-1)=0,求函数f(x)在[-2,2]上的最大值、最小值.11.(14分)(2011·汕头模拟)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(1)求m,n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.。
学案46 利用向量方法求空间角导学目标: 1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角.自主梳理1.两条异面直线的夹角(1)定义:设a ,b 是两条异面直线,在直线a 上任取一点作直线a ′∥b ,则a ′与a 的夹角叫做a 与b 的夹角.(2)范围:两异面直线夹角θ的取值范围是_______________________________________. (3)向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos θ=________=______________.2.直线与平面的夹角(1)定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角. (2)范围:直线和平面夹角θ的取值范围是________________________________________.(3)向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=__________或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________. (2)二面角的向量求法:①若AB 、CD 分别是二面角α—l —β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).②设n 1,n 2分别是二面角α—l —β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为() A.45°B.135°C.45°或135°D.90°2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则()A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于()A.120°B.60°C.30°D.以上均错4.(2011·湛江月考)二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为()A.150°B.45°C.60°D.120°5.(2011·铁岭模拟)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD夹角的大小为()A.30°B.45°C.60°D.75°探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2(2011·新乡月考)如图,已知两个正方形ABCD和DCEF不在同一平面内,M,N 分别为AB,DF的中点.若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD 都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.探究点三利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3(2011·沧州月考)如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ; (2)求二面角A —SC —B 的余弦值.探究点四 向量法的综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB =90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a 、b 的夹角θ,需求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ.可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|.3.求二面角α—l —β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角.则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·成都月考)在正方体ABCD —A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( )A.12B.21015C.23D.11152.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.310103.已知正四棱锥S —ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( )A.13B.23C.33D.234.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知B 1C ,C 1D 与上底面A 1B 1C 1D 1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为()A.26 B.63C.36 D.645.(2011·兰州月考)P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为() A.60°B.70°C.80°D.90°二、填空题(每小题4分,共12分)6.(2011·郑州模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成角的正弦值为________.三、解答题(共38分)9.(12分)(2011·烟台模拟)如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC 是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(12分)(2011·大纲全国)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.11.(14分)(2011·湖北)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.学案46 利用向量方法求空间角自主梳理1.(2)⎝⎛⎦⎤0,π2 (3)|cos φ| ⎪⎪⎪⎪a·b |a|·|b | 2.(2)⎣⎡⎦⎤0,π2 (3)|cos φ| 3.(1)[0,π] 自我检测1.C 2.B 3.C 4.C 5.C 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105. 变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2.又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, ∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2). 又DA →=(0,0,2)为平面DCEF 的法向量, 可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成角的正弦值为 |cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ), ∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0.解得a =1,b =-2.∴n =(2,1,-2).设AB 与平面BDF 所成的角为θ, 则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23,即sin θ=23,故AB 与平面BDF 所成角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1),∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0.∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1. ∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA .连接OA ,△ABC 为等腰直角三角形, 所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形, 故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2, 所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系Oxyz ,如右图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1). SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12,SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角. cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33. 例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连接BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0, 同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点,则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2=cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1. 故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°角. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG .由于AB =2EF ,因此BC =2FG . 连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点, 则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM为平行四边形,因此GM∥F A.又F A⊂平面ABFE,GM⊄平面ABFE,所以GM∥平面ABFE.方法二因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,所以∠EGF=90°,△ABC∽△EFG.由于AB=2EF,所以BC=2FG.取BC的中点N,连接GN,因此四边形BNGF为平行四边形,所以GN∥FB.在▱ABCD中,M是线段AD的中点,连接MN,则MN∥AB.因为MN∩GN=N,所以平面GMN∥平面ABFE.又GM⊂平面GMN,所以GM∥平面ABFE.(2)解方法一因为∠ACB=90°,所以∠CAD=90°.又EA⊥平面ABCD,所以AC,AD,AE两两垂直.分别以AC,AD,AE所在直线为x轴,y轴和z轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1), 所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1). 设平面BFC 的法向量为m =(x 1,y 1,z 1), 则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0). 所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连接CH . 因为AC =BC , 所以CH ⊥AB , 则CH ⊥平面ABFE .过H 向BF 引垂线交BF 于R ,连接CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角.由题意,不妨设AC =BC =2AE =2, 在直角梯形ABFE 中,连接FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2, 因此在Rt △BHF 中,HR =63. 由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3. 因此二面角A -BF -C 的大小为60°. 课后练习区 1.B[以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,易知DB 1→=(1,1,1),CM →=⎝⎛⎭⎫1,-12,0, 故cos 〈DB 1→,CM →〉=DB 1→·CM →|DB 1→||CM →|=1515,从而sin 〈DB 1→,CM →〉=21015.]2.B [建立空间直角坐标系如图. 则A (1,0,0),E (0,2,1), B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.] 3.C 4.D 5.D [不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°.] 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2, 则PB =2,OB =1,OP =1.∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1. ∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1), 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255. 7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2.8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系, 则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2. 则CD →=⎝⎛⎭⎫32,-12,2, CB 1→=(3,1,2), 设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧ n ·CD →=0,n ·CB 1→=0, 解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2, ∴sin θ=|cos 〈DA →,n 〉|=45. 9.解 (1)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分)依题意可知,ABFC 是正方形,∴∠BAF =45°.即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(7分)∴BD →=(-3 2,-3 2,8),EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(10分) 设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210. 即直线BD 与EF 所成的角的余弦值为8210. (12分)10.方法一 (1)证明 取AB 中点E ,连接DE ,则四边形BCDE 为矩形,DE =CB =2,连接SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(3分)由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(6分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.(8分) 作FG ⊥BC ,垂足为G ,则FG =DC =1.连接SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG .作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217. 由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(10分) 设AB 与平面SBC 所成的角为α,则sin α=d EB =217, 即AB 与平面SBC 所成的角的正弦值为217.(12分) 方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分)又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ),由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2 =x 2+(y -2)2+z 2, 故x =1.由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧ y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32), BS →=(1,-32,32),DS →=(0,12,32). 因为DS →·AS →=0,DS →·BS →=0,故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(6分)(2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧ m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(9分)又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217, 所以AB 与平面SBC 所成角的正弦值为217.(12分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4),EF →=(-3,1,1).则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(7分) (2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).(8分)AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0,即⎩⎪⎨⎪⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4). 又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cosθ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(11分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63. (14分)。
学案21 两角和与差的正弦、余弦和正切公式导学目标: 1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________. (3)两角和与差的正切tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________.(α,β,α+β,α-β均不等于k π+π2,k ∈Z )其变形为:tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ), 其中⎩⎪⎨⎪⎧cos φ= ,sin φ= ,tan φ=ba,角φ称为辅助角.自我检测 1.(2010·福建)计算sin 43°cos 13°-cos 43°sin 13°的结果等于 ( )A.12B.33C.22D.322.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是 ( )A .-235 B.235 C .-45 D.453.函数f (x )=sin 2x -cos 2x 的最小正周期是 ( )A.π2B .πC .2πD .4π 4.(2011·台州月考)设0≤α<2π,若sin α>3cos α,则α的取值范围是 ( )A.⎝⎛⎭⎫π3,π2B.⎝⎛⎭⎫π3,πC.⎝⎛⎭⎫π3,4π3D.⎝⎛⎭⎫π3,3π2 5.(2011·广州模拟)已知向量a =(sin x ,cos x ),向量b =(1,3),则|a +b |的最大值为( )A .1 B. 3 C .3 D .9探究点一 给角求值问题(三角函数式的化简、求值) 例1 求值: (1)[2sin 50°+sin 10°(1+3tan 10°)]2sin 280°; (2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1 求值:(1)2cos 10°-sin 20°sin 70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2 已知0<β<π4<α<3π4,cos ⎝⎛⎭⎫π4-α=35, sin ⎝⎛⎭⎫3π4+β=513,求sin(α+β)的值.变式迁移2 (2011·广州模拟)已知tan ⎝⎛⎭⎫π4+α=2,tan β=12. (1)求tan α的值;(2)求sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)的值.探究点三 给值求角问题(已知某角的三角函数值,求另一角的值)例3 已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.变式迁移3 (2011·岳阳模拟)若sin A =55,sin B =1010,且A 、B 均为钝角,求A +B 的值.转化与化归思想的应用例 (12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.【答题模板】解 (1)∵|a -b |=255,∴a 2-2a·b +b 2=45.[2分]又∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=b 2=1, a·b =cos αcos β+sin αsin β=cos(α-β),[4分]故cos(α-β)=a 2+b 2-452=2-452=35.[6分](2)∵-π2<β<0<α<π2,∴0<α-β<π.∵cos(α-β)=35,∴sin(α-β)=45.[8分]又∵sin β=-513,-π2<β<0,∴cos β=1213.[9分]故sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365.[12分] 【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|a -b |=255,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将α变为(α-β)+β.【易错点剖析】|a -b |平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点.1.转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换,幂的升降变换等等.2.变换则必须熟悉公式.分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.3.恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化.4.基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数,化为同次幂,化为比例式,化为常数.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·佛山模拟)已知sin ⎝⎛⎭⎫α+π3+sin α=-435,则cos ⎝⎛⎭⎫α+2π3等于 ( ) A .-45 B .-35 C.35 D.452.已知cos ⎝⎛⎭⎫α+π6-sin α=233,则sin ⎝⎛⎭⎫α-7π6的值是 ( ) A .-233 B.233 C .-23 D.233.(2011·宁波月考)已知向量a =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝⎛⎭⎫α+4π3等于( )A .-34 B .-14 C.34 D.144.函数y =sin x +cos x 图象的一条对称轴方程是 ( )A .x =5π4B .x =3π4C .x =-π4D .x =-π25.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 的大小为 ( ) A.π6 B.56π C.π或5π D.π或2π6.(2010·重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33-sin α13·sin α2+α33=________.7.设sin α=35 ⎝⎛⎭⎫π2<α<π,tan(π-β)=12,则tan(α-β)=________. 8.(2011·惠州月考)已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈⎝⎛⎭⎫-π2,π2,则tan(α+β)=__________,α+β的值为________.三、解答题(共38分)9.(12分)(1)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.10.(12分)(2010·四川)(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β- sin αsin β;②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C .11.(14分)(2011·济南模拟)设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈⎣⎡⎦⎤-π3,π3,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.答案 自主梳理1.(1)cos αcos β-sin αsin β cos αcos β+sin αsin β (2)sin αcos β+cos αsin β sin αcos β-cos αsin β (3)tan α+tan β1-tan αtan β tan α-tan β1+tan αtan β 2.a a 2+b 2 b a 2+b 2 自我检测1.A 2.C 3.B 4.C 5.C 课堂活动区例1 解题导引 在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量向特殊角或可计算的角转化,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.如果满足则直接使用,如果不满足需转化一下角或转换一下名称,就可以使用.解 (1)原式=⎣⎡⎦⎤2sin 50°+sin 10°·⎝⎛⎭⎫1+3sin 10°cos 10°·2sin 80°=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2 sin 80°=⎝ ⎛⎭⎪⎪⎫2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10°=⎝⎛⎭⎫2sin 50°+2sin 10°sin 40°cos 10°·2cos 10° =2sin 60°cos 10°·2cos 10°=22sin 60° =22×32= 6.(2)原式=sin[(θ+45°)+30°]+cos(θ+45°)-3·cos[(θ+45°)-30°]=32sin(θ+45°)+12cos(θ+45°)+cos(θ+45°)-32cos(θ+45°)-32sin(θ+45°)=0. 变式迁移1 解 (1)原式=2cos (30°-20°)-sin 20°sin 70°=3cos 20°+sin 20°-sin 20°sin 70°=3cos 20°sin 70°= 3.(2)原式=tan[(π6-θ)+(π6+θ)][1-tan(π6-θ)·tan(π6+θ)]+3tan(π6-θ)tan(π6+θ)= 3.例2 解题导引 对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论.应注意公式的灵活运用,掌握其结构特征,还要学会拆角、拼角等技巧.解 cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α=35, ∵0<β<π4<α<3π4,∴π2<π4+α<π,3π4<3π4+β<π. ∴cos ⎝⎛⎭⎫π4+α=-1-sin 2⎝⎛⎭⎫π4+α=-45, cos ⎝⎛⎭⎫3π4+β=-1-sin 2⎝⎛⎭⎫3π4+β=-1213. ∴sin[π+(α+β)]=sin ⎣⎡⎦⎤⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4+β =sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫3π4+β+cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫3π4+β =35×⎝⎛⎭⎫-1213-45×513=-5665. ∴sin(α+β)=5665.变式迁移2 解 (1)由tan ⎝⎛⎭⎫π4+α=2,得1+tan α1-tan α=2, 即1+tan α=2-2tan α,∴tan α=13.(2)sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)=sin αcos β+cos αsin β-2sin αcos β2sin αsin β+cos αcos β-sin αsin β=-(sin αcos β-cos αsin β)cos αcos β+sin αsin β=-sin (α-β)cos (α-β)=-tan(α-β)=-tan α-tan β1+tan αtan β=-13-121+13×12=17.例3 解题导引 (1)通过求角的某种三角函数值来求角,在选取函数时,遵循以下原则: ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. (2)解这类问题的一般步骤: ①求角的某一个三角函数值; ②确定角的范围;③根据角的范围写出所求的角.解 (1)∵tan α2=12,∴sin α=sin ⎝⎛⎭⎫2·α2=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tan α21+tan 2α2=2×121+⎝⎛⎭⎫122=45.(2)∵0<α<π2,sin α=45,∴cos α=35.又0<α<π2<β<π,∴0<β-α<π.由cos(β-α)=210,得sin(β-α)=7210.∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)sin α =7210×35+210×45=25250=22. 由π2<β<π得β=34π. (或求cos β=-22,得β=34π)变式迁移3 解 ∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010.∴cos(A +B )=cos A cos B -sin A sin B=-255×⎝⎛⎭⎫-31010-55×1010=22.①又∵π2<A <π,π2<B <π,∴π<A +B <2π.②由①②,知A +B =7π4.课后练习区1.D 2.D 3.B 4.A 5.A6.-12 7.-211 8.3 -23π9.解 (1)∵β∈⎝⎛⎭⎫π2,π,cos β=-513, ∴sin β=1213.…………………………………………………………………………(2分)又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365, ∴cos(α+β)=-1-sin 2(α+β)=- 1-⎝⎛⎭⎫33652=-5665,…………………………………………………………(4分) ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =3365·⎝⎛⎭⎫-513-⎝⎛⎭⎫-5665·1213=35.…………………………………………………………(6分) (2)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13,……………………………………………………(8分)∴tan(2α-β)=tan[α+(α-β)]=tan α+tan (α-β)1-tan αtan (α-β)=13+121-13×12=1.……………………………………………………(10分)∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π4.……………………………………………………(12分)10.(1)①证明 如图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), …………………………………………………………………………………………(2分) 由|P 1P 3|=|P 2P 4|及两点间的距离公式, 得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β),∴cos(α+β)=cos αcos β-sin αsin β.……………………………………………………(4分)②解 由①易得,cos ⎝⎛⎭⎫π2-α=sin α,sin ⎝⎛⎭⎫π2-α=cos α.sin(α+β)=cos ⎣⎡⎦⎤π2-(α+β)=cos ⎣⎡⎦⎤⎝⎛⎭⎫π2-α+(-β) =cos ⎝⎛⎭⎫π2-αcos(-β)-sin ⎝⎛⎭⎫π2-αsin(-β) =sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β.……………………………………………………(7分) (2)解 由题意,设△ABC 的角B 、C 的对边分别为b 、c .则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A ,……………………………………………………………(9分) 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010, 由cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010. ……………………………………………………………………………………………(11分)故cos C =cos[π-(A +B )]=-cos(A +B )=-1010.……………………………………………………………………………………………(12分) 11.解 (1)依题设得f (x )=2cos 2x +3sin 2x=1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3, 得sin ⎝⎛⎭⎫2x +π6=-32.……………………………………………………………………(3分) ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4.………………………………………………………………(6分)(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即-π3+k π≤x ≤π6+k π (k ∈Z ),得函数单调增区间为⎣⎡⎦⎤-π3+k π,π6+k π (k ∈Z ).……………………………………(10分) 列表:…………………………………………………………………………………………(14分)。
§7.6 数学归纳法数学归纳法证明某些与正整数n 有关的命题,它的基本步骤是: (1)验证:当n 取第一个值n 0(如n 0=1或2等)时,命题成立;(2)在假设当n =k (k ∈N +,k ≥n 0)时命题成立的前提下,推出当n =k +1时,命题成立. 根据(1)(2)可以断定命题对一切从n 0开始的正整数n 都成立.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0 答案 C解析 凸n 边形的边最少有三条,故第一个值n 0取3. 3.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)为( )A .1 B.15C .1+12+13+14+15D .非以上答案 答案 C解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.4.设f (n )=1n +1+1n +2+…+1n +n,n ∈N +,那么f (n +1)-f (n )=________.答案12n +1-12n +2解析 f (n +1)-f (n )=1n +2+1n +3+…+1n +n +1n +1+n +1n +1+n +1-(1n +1+1n +2+…+1n +n )=12n +1+12n +2-1n +1=12n +1-12n +2. 5.用数学归纳法证明:“1+12+13+…+12n -1<n (n ∈N +,n >1)”时,由n =k (k >1)不等式成立,推理n =k +1时,左边应增加的项数是________. 答案 2k解析 当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k 项.题型一 用数学归纳法证明等式例1 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N +).思维启迪 证明时注意等式两边从n =k 到n =k +1时的变化. 证明 ①当n =1时,等式左边=2,右边=2,故等式成立; ②假设当n =k (k ∈N +)时等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k ·1·3·5·…·(2k -1)(2k +1)·2=2k +1·1·3·5·…·(2k -1)(2k +1), 这就是说当n =k +1时等式也成立. 由①②可知,对所有n ∈N +等式成立. 思维升华 用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:对任意的n ∈N +,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1. 证明 (1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N +)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3) =2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1,所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N +等式都成立. 题型二 用数学归纳法证明不等式例2 已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈[14,12]时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N +,证明:a n <1n +1.思维启迪 (1)利用题中条件分别确定a 的X 围,进而求a ; (2)利用数学归纳法证明.(1)解 由题意,知f (x )=ax -32x 2=-32(x -a 3)2+a 26.又f (x )max ≤16,所以f (a 3)=a 26≤16.所以a 2≤1.又x ∈[14,12]时,f (x )≥18,所以⎩⎨⎧f (12)≥18,f (14)≥18,即⎩⎨⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立.因为当x ∈(0,12)时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N +)时,不等式0<a k <1k +1成立.因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈(0,13]时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f (1k +1).于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2.所以当n =k +1时,原不等式也成立.根据①②,知对任何n ∈N +,不等式a n <1n +1成立.思维升华 用数学归纳法证明不等式的关键是由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.用数学归纳法证明:对一切大于1的自然数,不等式(1+13)(1+15) (1)12n -1)>2n +12均成立.证明 (1)当n =2时,左边=1+13=43;右边=52. ∵左边>右边,∴不等式成立.(2)假设n =k (k ≥2,且k ∈N +)时不等式成立,即 (1+13)(1+15)·…·(1+12k -1)>2k +12. 则当n =k +1时,(1+13)(1+15)·…·(1+12k -1)[1+12(k +1)-1]>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 题型三 归纳—猜想—证明例3已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N +.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.思维启迪 通过计算a 1,a 2,a 3寻求规律猜想{a n }的通项公式,然后用数学归纳法证明. (1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N +).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N +)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1(a n >0).即当n =k +1时,通项公式也成立. 由①和②,可知对所有n ∈N +,a n =2n +1-2n -1都成立.思维升华 (1)猜想{a n }的通项公式是一个由特殊到一般的过程,注意两点:①准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);②证明a k +1时,a k +1的求解过程与a 2、a 3的求解过程相似,注意体会特殊性与一般性的辩证关系.(2)“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性,这种思维方式是推动数学研究和发展的重要方式.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解 ∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1,∵函数g (x )=(x +1)2-1在[1,+∞)上单调递增. 于是由a 1≥1得a 2≥(a 1+1)2-1≥22-1, 进而a 3≥(a 2+1)2-1≥24-1>23-1, 由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N +)时结论成立,即a k ≥2k -1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上单调递增知a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N +,都有a n ≥2n -1, 即1+a n ≥2n ,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n≤12+122+123+…+12n =1-(12)n <1.归纳—猜想—证明问题典例:(12分)设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.思维启迪 通过计算a 2,a 3,a 4观察规律猜想a n ,然后用数学归纳法证明. 规X 解答(1)解 ∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a 3+a.[2分] 猜想a n =a(n -1)+a(n ∈N +).[4分](2)证明 ①易知,n =1时,猜想正确.[6分] ②假设n =k 时猜想正确,即a k =a(k -1)+a ,[8分]则a k +1=f (a k )=a ·a ka +a k =a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确.[11分]由①②知,对于任何n ∈N +,都有a n =a(n -1)+a .[12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论; 第二步:验证一般结论对第一个值n 0(n 0∈N +)成立.第三步:假设n =k (k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N +成立.温馨提醒 解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,还有以下几点容易造成失分,在备考时要高度关注:(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n=k到n=k+1这一步时,忽略了假设条件去证明,造成使用的不是纯正的数学归纳法.(3)不等式证明过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.方法与技巧1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础.2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点:(1)归纳假设就是已知条件;(2)在推证n=k+1时,必须用上归纳假设.3.利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.失误与防X1.数学归纳法证题时初始值n0不一定是1;2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.A组专项基础训练(时间:40分钟)一、选择题1.用数学归纳法证明2n>2n+1,n的第一个取值应是()A.1 B.2 C.3 D.4答案 C解析 ∵n =1时,21=1,2×1+1=3,2n >2n +1不成立; n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立. ∴n 的第一个取值应是3.2.用数学归纳法证明“1+a +a 2+…+an +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( ) A .1 B .1+aC .1+a +a 2D .1+a +a 2+a 3 答案 C3.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·2·…·(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”时,左边应增添的式子是( ) A .2k +1 B .2k +3 C .2(2k +1) D .2(2k +3) 答案 C解析 左边应增添的式子等于 (k +2)(k +3)·…·[(k +1)+(k +1)](k +1)(k +2)·…·(k +k )=(k +2)(k +3)·…·(2k )(2k +1)(2k +2)(k +1)(k +2)·…·(2k )=2(2k +1).4.对于不等式n 2+n <n +1(n ∈N +),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5. 当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7. 故猜想a n =1(2n -1)(2n +1). 二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________. 答案 12n +1+12n +2+12n +3+…+12n +2n解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n, S n =1+12+13+14+…+12n , ∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n. 7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真.答案 2k +1解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1.8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用 n 表示).答案 5 12(n +1)(n -2) 解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2). 三、解答题9.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. 证明 (1)当n =1时,左边=12=1,右边=(-1)0·1×(1+1)2=1, ∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k (k +1)2+(-1)k ·(k +1)2 =(-1)k·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2. ∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N +有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2. 10.已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n .求证:当n ∈N +时,a n <a n +1.证明 (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2.(2)假设当n =k (k ∈N +,k ≥1)时,0≤a k <a k +1,则由a 2k +1-a 2k =(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立,根据(1)和(2),可知a n <a n +1对任何n ∈N +都成立.B 组 专项能力提升(时间:30分钟)1.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.2.下列代数式(其中k ∈N +)能被9整除的是( )A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )答案 D解析 (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N +)时,命题成立,即3(2+7n )能被9整除,那么当k =n +1时有3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.由(1)(2)知,命题对k ∈N +成立.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N +),通过计算a 1,a 2,a 3,a 4,可猜想a n =_____. 答案 2n -12n -1 解析 ∵a 1=1,∴a 2=12a 1+1=32, a 3=12a 2+1=74,a 4=12a 3+1=158.猜想a n =2n -12n -1. 4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N +. (1)当n =1,2,3时,试比较f (n )与g (n )的大小;(2)猜想f (n )与g (n )的大小关系,并给出证明.解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-[12k 2-1(k +1)3] =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N +,都有f (n )≤g (n )成立.5.若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解 当n =1时,11+1+11+2+13+1>a 24, 即2624>a 24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1(k +1)+1+1(k +1)+2+…+13(k +1)+1 =1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-23(k +1)]. 因为13k +2+13k +4-23(k +1)=6(k +1)(3k +2)(3k +4)-23(k +1)=18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)=2(3k +2)(3k +4)(3k +3)>0, 所以当n =k +1时不等式也成立.由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524,所以a 的最大值等于25.。
§4.3 两角和与差的正弦、余弦、正切1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4.函数f (x )=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)(其中tan φ=ba)或f (α)=a 2+b 2·cos(α-φ)(其中tan φ=ab).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(5)存在实数α,使tan 2α=2tan α.( √ ) (6)当α+β=π4时,(1+tan α)(1+tan β)=2.( √ )2.(2013·某某)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43B.34C .-34D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.3.(2012·某某)若sin α+cos αsin α-cos α=12,则tan 2α等于()A .-34B.34C .-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.4.(2012·某某)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案17250解析 ∵α为锐角且cos ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250. 5.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010.∴sin θ+cos θ=-105.题型一 三角函数式的化简与给角求值例1 (1)化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ(0<θ<π).(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).思维启迪 (1)分母为根式,可以利用二倍角公式去根号,然后寻求分子分母的共同点进行约分;(2)切化弦、通分.解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0.因此2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)(sin θ2-cos θ2)=(2sin θ2cos θ2+2cos 2θ2)(sin θ2-cos θ2)=2cos θ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.思维升华 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:①化为特殊角的三角函数值;②化为正、负相消的项,消去求值;③化分子、分母出现公约数进行约分求值.(1)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C2+3tan A 2tan C2的值为________.(2)2cos 10°-sin 20°sin 70°的值是( )A.12B.32C.3D. 2 答案 (1) 3 (2)C解析 (1)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C 2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. (2)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.题型二 三角函数的给值求值、给值求角例2 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.思维启迪 (1)拆分角:α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β,利用平方关系分别求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.(2)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. 思维升华 (1)解题中注意变角,如本题中α+β2=(α-β2)-(α2-β);(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的X 围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的X 围是(0,π),选余弦较好;若角的X 围为⎝⎛⎭⎫-π2,π2,选正弦较好.(1)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33C.539D .-69(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π6答案 (1)C (2)C解析 (1)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2),∵0<α<π2,则π4<π4+α<3π4,∴sin(π4+α)=223. 又-π2<β<0,则π4<π4-β2<π2,则sin(π4-β2)=63.故cos(α+β2)=cos[π4+α-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2)=13×33+223×63=539,故选C. (2)∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×(-1010)=22. ∴β=π4.题型三 三角变换的简单应用例3已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.思维启迪 (1)可将f (x )化成y =A sin(ωx +φ)的形式; (2)据已知条件确定β,再代入f (x )求值. (1)解∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2=sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.思维升华 三角变换和三角函数性质相结合是高考的一个热点,解题时要注意观察角、式子间的联系,利用整体思想解题.(1)函数f (x )=3sin x +cos(π3+x )的最大值为( )A .2 B.3C .1 D.12(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.答案 (1)C (2)π解析 (1)f (x )=3sin x +cos π3·cos x -sin π3·sin x=12cos x +32sin x =sin(x +π6). ∴f (x )max =1. (2)f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.高考中的三角变换问题典例:(20分)(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4B.π4或3π4 C.π4D .2k π+π4(k ∈Z ) (3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53B .-59C.59D.53(4)(2012·某某)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32B .-12C.12D.32思维启迪 (1)注意和差公式的逆用及变形.(2)可求α+β的某一三角函数值,结合α+β的X 围求角. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故所求=1+121-12=3+2 2.(2)由sin α=55,cos β=31010且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010=22, 又0<α+β<π,故α+β=π4.(3)方法一 利用同角三角函数的基本关系及二倍角公式求解. ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 利用同角三角函数的基本关系及二倍角公式求解. 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153. 由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)利用两角和的正弦公式化简.原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.答案 (1)3+22 (2)C (3)A (4)C温馨提醒 三角变换中的求值问题要注意利用式子的特征,灵活应用公式;对于求角问题,一定要结合角的X 围求解.方法与技巧 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防X1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)X围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的X围后再求值.A组专项基础训练(时间:40分钟)一、选择题1.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35B.45C.74D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.2.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318B.1322C.322D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.3.(2013·某某)4cos 50°-tan 40°等于()A.2B.2+32C.3D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.4.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为( )A .-210B.210C.3210D.7210答案 A解析 由tan α+1tan α=103得sin αcos α+cos αsin α=103,∴1sin αcos α=103,∴sin 2α=35.∵α∈(π4,π2),∴2α∈(π2,π),∴cos 2α=-45.∴sin(2α+π4)=sin 2αcos π4+cos 2αsin π4=22×(35-45)=-210. 5.在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于( )A.π3B.2π3C.π6D.π4 答案 A解析 由已知可得tan A +tan B =3(tan A ·tan B -1), ∴tan(A +B )=tan A +tan B 1-tan A tan B =-3,又0<A +B <π,∴A +B =23π,∴C =π3.二、填空题6.若sin(π2+θ)=35,则cos 2θ=________.答案 -725解析 ∵sin(π2+θ)=cos θ=35,∴cos 2θ=2cos 2θ-1=2×(35)2-1=-725.7.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.答案110或1解析 tan α+tan β=lg(10a )+lg 1a=lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β=1,∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或a =1.8.3tan 12°-3(4cos 212°-2)sin 12°=________.答案 -4 3解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12° =23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3.三、解答题9.已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.解 由cos β=55,β∈(0,π2),得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.∵α∈(π2,π),β∈(0,π2),∴π2<α+β<3π2,∴α+β=5π4.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升 (时间:30分钟)1.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( )A .-255B .-3510C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.2.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( ) A.π12B.π6C.π4D.π3 答案 D解析 依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, 故β=π3,选D.3.设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 答案3解析 方法一 因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x ,所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x 的最小值为 3.方法二 y =2sin 2x +1sin 2x =3sin 2x +cos 2x2sin x cos x=3tan 2x +12tan x =32tan x +12tan x .∵x ∈(0,π2),∴tan x >0.∴32tan x +12tan x ≥2 32tan x ·12tan x= 3. (当tan x =33,即x =π6时取等号) 即函数的最小值为 3.4.已知tan(π+α)=-13,tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α.(1)求tan(α+β)的值; (2)求tan β的值.解 (1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α =sin 2α+4cos 2α10cos 2α-sin 2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α=2cos α(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-(-13)=516. (2)tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=516+131-516×13=3143.5.已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值. 解 (1)由T =2πω=10π得ω=15.(2)由⎩⎨⎧f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617得⎩⎨⎧2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5α+53π+π6=-65,2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5β-56π+π6=1617,整理得⎩⎨⎧sin α=35,cos β=817.∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=45,sin β=1-cos 2β=1517.∴cos(α+β)=cos αcos β -sin αsin β =45×817-35×1517=-1385.。
学案21 两角和与差的正弦、余弦和正切公式导学目标: 1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________. (3)两角和与差的正切tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________.(α,β,α+β,α-β均不等于k π+π2,k ∈Z)其变形为:tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 2.辅助角公式asin α+bcos α=a 2+b 2sin(α+φ), 其中⎩⎪⎨⎪⎧cos φ= ,sin φ= ,tan φ=ba,角φ称为辅助角.自我检测1.(2018·福建)计算sin 43°cos 13°-cos 43°sin 13°的结果等于 ( ) A.12 B.33 C.22 D.322.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是 ( ) A .-235 B.235 C .-45 D.453.函数f(x)=sin 2x -cos 2x 的最小正周期是 ( ) A.π2 B .π C .2π D .4π 4.(2018·台州月考)设0≤α<2π,若sin α>3cos α,则α的取值范围是 ( ) A.⎝ ⎛⎭⎪⎫π3,π2 B.⎝ ⎛⎭⎪⎫π3,π C.⎝ ⎛⎭⎪⎫π3,4π3 D.⎝ ⎛⎭⎪⎫π3,3π2 5.(2018·广州模拟)已知向量a =(sin x ,cos x),向量b =(1,3),则|a +b|的最大值为( )A .1 B. 3 C .3 D .9探究点一 给角求值问题(三角函数式的化简、求值) 例1 求值:(1)[2sin 50°+sin 10°(1+3tan 10°)]2sin 280°; (2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1 求值:(1)2cos 10°-sin 20°sin 70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2 已知0<β<π4<α<3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求sin(α+β)的值.变式迁移2 (2018·广州模拟)已知tan ⎝ ⎛⎭⎪⎫π4+α=2,tan β=12. (1)求tan α的值;(2)求α+β-2sin αcos β2sin αsin β+α+β的值.探究点三 给值求角问题(已知某角的三角函数值,求另一角的值)例3 已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.变式迁移3 (2018·岳阳模拟)若sin A =55,sin B =1010,且A 、B 均为钝角,求A +B 的值.转化与化归思想的应用例 (12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b|=255. (1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.【答题模板】解 (1)∵|a -b|=255,∴a 2-2a·b+b 2=45.[2分] 又∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=b 2=1, a·b=cos αcos β+sin αsin β=cos(α-β),[4分]故cos(α-β)=a 2+b 2-452=2-452=35.[6分](2)∵-π2<β<0<α<π2,∴0<α-β<π.∵cos(α-β)=35,∴sin(α-β)=45.[8分]又∵sin β=-513,-π2<β<0,∴cos β=1213.[9分]故sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β =45×1213+35×⎝ ⎛⎭⎪⎫-513=3365.[12分] 【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|a -b|=255,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将α变为(α-β)+β.【易错点剖析】|a -b|平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点.1.转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换,幂的升降变换等等.2.变换则必须熟悉公式.分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件. 3.恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化.4.基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数,化为同次幂,化为比例式,化为常数.(满分:75分)一、选择题(每小题5分,共25分)1.(2018·佛山模拟)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,则cos ⎝⎛⎭⎪⎫α+2π3等于 ( ) A .-45 B .-35 C.35 D.452.已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=233,则sin ⎝ ⎛⎭⎪⎫α-7π6的值是 ( ) A .-233B.233C .-23 D.233.(2018·宁波月考)已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a⊥b,则sin ⎝⎛⎭⎪⎫α+4π3等于 ( )A .-34B .-14 C.34 D.144.函数y =sin x +cos x 图象的一条对称轴方程是 ( )A .x =5π4B .x =3π4C .x =-π4D .x =-π25.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 的大小为 ( ) A.π6 B.56πC.π6或5π D.π或2π6.(2018·重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P(点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33-sin α13·sin α2+α33=________.7.设sin α=35 ⎝ ⎛⎭⎪⎫π2<α<π,tan(π-β)=12,则tan(α-β)=________. 8.(2018·惠州月考)已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈⎝ ⎛⎭⎪⎫-π2,π2,则tan(α+β)=__________,α+β的值为________.三、解答题(共38分)9.(12分)(1)已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π且sin(α+β)=3365,cos β=-513.求sin α;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.10.(12分)(2018·四川)(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知△ABC 的面积S=12,AB →·AC →=3,且cos B =35,求cos C.11.(14分)(2018·济南模拟)设函数f(x)=a·b,其中向量a =(2cos x,1),b =(cos x ,3sin 2x),x ∈R.(1)若函数f(x)=1-3,且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x ; (2)求函数y =f(x)的单调增区间,并在给出的坐标系中画出y =f(x)在区间[0,π]上的图象.答案 自主梳理1.(1)cos αcos β-sin αsin β cos αcos β+sin αsin β (2)sin αcos β+cos αsin β sin αcos β-cos αsin β(3)tan α+tan β1-tan αtan β tan α-tan β1+tan αtan β 2.a a 2+b 2 b a 2+b2自我检测1.A 2.C 3.B 4.C 5.C 课堂活动区例1 解题导引 在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量向特殊角或可计算的角转化,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.如果满足则直接使用,如果不满足需转化一下角或转换一下名称,就可以使用.解 (1)原式=⎣⎢⎡⎦⎥⎤2sin 50°+sin 10°·⎝⎛⎭⎪⎫1+3sin 10°cos 10°·2sin 80°=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°· 2 sin 80°=⎝ ⎛⎭⎪⎪⎫2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10°=⎝ ⎛⎭⎪⎫2sin 50°+2sin 10°sin 40°cos 10°·2cos 10° =2sin 60°cos 10°·2cos 10°=22sin 60° =22×32= 6. (2)原式=sin[(θ+45°)+30°]+cos(θ+45°)-3·cos[(θ+45°)-30°]=32sin(θ+45°)+12cos(θ+45°)+cos(θ+45°)-32cos(θ+45°)-32sin(θ+45°)=0. 变式迁移1 解 (1)原式=--sin 20°sin 70°=3cos 20°+sin 20°-sin 20°sin 70°=3cos 20°sin 70°= 3.(2)原式=tan[(π6-θ)+(π6+θ)][1-tan(π6-θ)·tan(π6+θ)]+3tan(π6-θ)tan(π6+θ)=3.例2 解题导引 对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论.应注意公式的灵活运用,掌握其结构特征,还要学会拆角、拼角等技巧.解 cos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α=35,∵0<β<π4<α<3π4,∴π2<π4+α<π,3π4<3π4+β<π. ∴cos ⎝ ⎛⎭⎪⎫π4+α=-1-sin 2⎝ ⎛⎭⎪⎫π4+α=-45,cos ⎝ ⎛⎭⎪⎫3π4+β=-1-sin 2⎝ ⎛⎭⎪⎫3π4+β=-1213.∴sin[π+(α+β)]=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4+β =sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫3π4+β+cos ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫3π4+β=35×⎝ ⎛⎭⎪⎫-1213-45×513=-5665.∴sin(α+β)=5665. 变式迁移2 解 (1)由tan ⎝ ⎛⎭⎪⎫π4+α=2,得1+tan α1-tan α=2, 即1+tan α=2-2tan α,∴tan α=13.(2)si α+β-2sin αcos β2sin αsin β+α+β=sin αcos β+cos αsin β-2sin αcos β2sin αsin β+cos αcos β-sin αsin β =-αcos β-cos αsin βcos αcos β+sin αsin β=-α-βα-β=-tan(α-β)=-tan α-tan β1+tan αtan β=-13-121+13×12=17.例3 解题导引 (1)通过求角的某种三角函数值来求角,在选取函数时,遵循以下原则: ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好. (2)解这类问题的一般步骤: ①求角的某一个三角函数值; ②确定角的范围;③根据角的范围写出所求的角.解 (1)∵tan α2=12,∴sin α=sin ⎝⎛⎭⎪⎫2·α2=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tan α21+tan 2α2=2×121+⎝ ⎛⎭⎪⎫122=45.(2)∵0<α<π2,sin α=45,∴cos α=35.又0<α<π2<β<π,∴0<β-α<π.由cos(β-α)=210,得sin(β-α)=7210. ∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)sin α =7210×35+210×45=25250=22. 由π2<β<π得β=34π. (或求cos β=-22,得β=34π) 变式迁移3 解 ∵A、B 均为钝角且sin A =55,sin B =1010, ∴cos A=-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010. ∴cos(A+B)=cos Acos B -sin Asin B=-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22.① 又∵π2<A<π,π2<B<π,∴π<A +B<2π.②由①②,知A +B =7π4.课后练习区1.D 2.D 3.B 4.A 5.A6.-12 7.-211 8. 3 -23π9.解 (1)∵β∈⎝ ⎛⎭⎪⎫π2,π,cos β=-513, ∴sin β=1213.…………………………………………………………………………(2分)又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365, ∴cos (α+β)=-1-sin 2α+β=- 1-⎝ ⎛⎭⎪⎫33652=-5665,…………………………………………………………(4分)∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =3365·⎝ ⎛⎭⎪⎫-513-⎝ ⎛⎭⎪⎫-5665·1213=35.…………………………………………………………(6分) (2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13,……………………………………………………(8分) ∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1.……………………………………………………(10分) ∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π4.……………………………………………………(12分)10.(1)①证明 如图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), …………………………………………………………………………………………(2分) 由|P 1P 3|=|P 2P 4|及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β),∴cos(α+β)=cos αcos β-sin αsin β.……………………………………………………(4分)②解 由①易得,cos ⎝ ⎛⎭⎪⎫π2-α=sin α, sin ⎝ ⎛⎭⎪⎫π2-α=cos α. sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β =cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β) =sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β.……………………………………………………(7分) (2)解 由题意,设△ABC 的角B 、C 的对边分别为b 、c.则S =12bcsin A =12,AB →·AC →=bccos A =3>0,∴A∈⎝ ⎛⎭⎪⎫0,π2,cos A =3sin A ,……………………………………………………………(9分)又sin 2A +cos 2A =1,∴sin A=1010,cos A =31010,由cos B =35,得sin B =45.∴cos(A+B)=cos Acos B -sin Asin B =1010. ……………………………………………………………………………………………(11分)故cos C =cos[π-(A +B)]=-cos(A +B)=-1010.……………………………………………………………………………………………(12分)11.解 (1)依题设得f(x)=2cos 2x +3sin 2x=1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎪⎫2x +π6+1. 由2sin ⎝⎛⎭⎪⎫2x +π6+1=1-3, 得sin ⎝⎛⎭⎪⎫2x +π6=-32.……………………………………………………………………(3分) ∵-π3≤x≤π3,∴-π2≤2x+π6≤5π6.∴2x+π6=-π3,即x =-π4.………………………………………………………………(6分)(2)-π2+2k π≤2x+π6≤π2+2k π (k ∈Z),即-π3+k π≤x≤π6+k π (k ∈Z),得函数单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π (k ∈Z).……………………………………(10分) 列表:…………………………………………………………………………………………(14分)。