《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2第一章 棱柱、棱锥和棱台的结构特征(一)
- 格式:doc
- 大小:153.50 KB
- 文档页数:4
3.2.4 二面角及其度量一、基础过关1.一个二面角的两个面分别平行于另一个二面角的两个面,那么这两个二面角( )A .相等B .互补C .相等或互补D .不确定 2.若分别与一个二面角的两个面平行的向量m =(-1,2,0),n =(1,0,-2),且m 、n 都与二面角的棱垂直,则二面角的正弦值为( ) A.15 B.245 C.14 D.1543.二面角α—l —β中,平面α的一个法向量n 1=⎝⎛⎭⎫32,-12,-2,平面β的一个法向量n 2=⎝⎛⎭⎫0,12,2,则二面角α—l —β的大小为 ( ) A .120°B .150°C .30°或150°D .60°或120° 4.在正方体AC 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的 二面角的余弦值为( )A .-12B.23C.33D.22 5.平面α的一个法向量n 1=(1,0,1),平面β的一个法向量n 2=(-3,1,3),则α与β所成的角是________.6.已知A ∈α,P ∉α,P A →=⎝⎛⎭⎫-32,12,2,平面α的一个法向量n =⎝⎛⎭⎫0,-12,-2,则直线P A 与平面α所成的角为________.二、能力提升7.在边长为1的菱形ABCD 中,∠ABC =60°,将菱形沿对角线AC 折起,使折起后BD =1,则二面角B —AC —D 的余弦值为( )A.13B.12C.233D.32 8.A 、B 是二面角α—l —β的棱l 上两点,P 是平面β上一点,PB ⊥l 于B ,P A 与l 成45°角,P A 与平面α成30°角,则二面角α—l —β的大小是( ) A .30° B .60° C .45° D .75°9.如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线l(库底与水坝的交线)的距离AC和BD分别为a和b,CD的长为c,AB的长为d.水库底与水坝所成二面角的余弦值为________.10.如图,已知四棱锥P—ABCD中,P A⊥底面ABCD,且ABCD为正方形,P A=AB=a,点M是PC的中点.(1)求BP与DM所成的角的大小;(2)求二面角M—DA—C的大小.11.如图,四棱锥F—ABCD的底面ABCD是菱形,其对角线AC=2,BD = 2.CF与平面ABCD垂直,CF=2.求二面角B—AF—D的大小.三、探究与拓展12. 如图,在四棱锥A—BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=2,AB=AC.(1)证明AD⊥CE;(2)设CE与平面ABE所成的角为45°,求二面角C—AD—E的余弦值.答案1.C 2.B 3.C 4.B5.90°7.A 8.C 9.a 2+b 2+c 2-d 22ab10.解 (1)建系如图,由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ.∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角的大小为90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0),BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0.又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22. ∴所求的二面角M —DA —C 的大小为45°.11.解 过点A 作AE ⊥平面ABCD .以A 为坐标原点,BD →、AC →、AE →方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).于是B ⎝⎛⎭⎫-22,1,0, D ⎝⎛⎭⎫22,1,0,F (0,2,2).设平面ABF 的法向量n 1=(x ,y ,z ),则由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-22x +y =0,2y +2z =0.令z =1,得⎩⎪⎨⎪⎧ x =-2,y =-1.所以n 1=(-2,-1,1).同理,可求得平面ADF 的法向量n 2=(2,-1,1).由n 1·n 2=0知,平面ABF 与平面ADF 垂直,所以二面角B —AF —D 的大小等于π2.12. (1)证明 作AO ⊥BC ,垂足为O ,则AO ⊥底面BCDE ,且O 为BC 的中点.以O 为坐标原点,射线OC 为x 轴正方向,建立如图所示的直角坐标系Oxyz .设A (0,0,t ).由已知条件有C (1,0,0),D (1,2,0),E (-1,2,0),CE →=(-2,2,0),AD →=(1,2,-t ),所以CE →·AD →=0,得AD ⊥CE .(2)解 作CF ⊥AB ,垂足为F ,连接FE ,如图所示.设F (x,0,z ),则CF →=(x -1,0,z ),BE →=(0,2,0),CF →·BE →=0.故CF ⊥BE .又AB ∩BE =B ,所以CF ⊥平面ABE ,故∠CEF 是CE 与平面ABE 所成的角,∠CEF =45°,由CE =6,得CF = 3.又CB =2,所以∠FBC =60°,所以△ABC 为等边三角形,因此A (0,0,3). 作CG ⊥AD ,垂足为G ,连接GE .在Rt △ACD 中,求得|AG |=23|AD |. 故G ⎝⎛⎭⎫23,223,33,GC →=⎝⎛⎭⎫13,-223,-33, GE →=⎝⎛⎭⎫-53,23,-33. 又AD →=(1,2,-3),GC →·AD →=0,GE →·AD →=0, 所以GC →与GE →的夹角等于二面角C —AD —E 的平面角.由cos 〈GC →,GE →〉=GC →·GE →|GC →||GE →|=-1010.。
3.1.2 空间向量的基本定理一、基础过关1.“a =x b ”是“向量a 、b 共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是( ) A.AB →+BC →=AC →B.AB →-BC →=AC →C.AB →=BC → D .|AB →|=|BC →| 3.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( ) A .aB .bC .a +2bD .a +2c4.设M 是△ABC 的重心,记BC →=a ,CA →=b ,AB →=c ,则AM →等于( ) A.b -c 2B.c -b 2C.b -c 3D.c -b 35.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________.6.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).二、能力提升7.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A 、B 、DB .A 、B 、C C .B 、C 、D D .A 、C 、D8.在下列等式中,使点M 与点A ,B ,C 一定共面的是( ) A.OM →=25OA →-15OB →-15OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=09.在以下3个命题中,真命题的个数是________.①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面.②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线. ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.10.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,试求实数k 的值.11.如图所示,四边形ABCD 和四边形ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.12.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →、B 1C →、EF →是共面向量.三、探究与拓展13.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A 、E 、C 1、F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .答案1.A 2.C 3.D 4.D 5.215 6.12a +14b +14c7.A 8.C9.210.解 因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2, 又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.11.解 ∵M ,N 分别是AC ,BF 的中点, 而四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →.∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →). ∴CE →=2MN →.∴CE →∥MN →,即CE →与MN →共线.12.证明如图.EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →、B 1C →、EF →是共面向量.13.(1)证明 因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→ =⎝⎛⎭⎫AB →+13AA 1→+(AD →+23AA 1→) =AB →+BE →+AD →+DF →=AE →+AF →,所以A 、E 、C 1、F 四点共面.(2)解 因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→ =-AB →+AD →+13AA 1→. 所以x =-1,y =1,z =13. 所以x +y +z =13.。
§2.5 直线与圆锥曲线一、基础过关1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 2.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于 ( )A .1B .-1C .±1D .±23.双曲线y 2b 2-x 2a 2=1 (a ,b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1 (a >b >0)交于点M 、N ,则|MN |等于( ) A .a +bB.2aC.2(a 2+b 2)D.2(a 2-b 2) 4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,如果x 1+x 2=6,则|AB |=________.5.过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程为__________________.二、能力提升6.已知m ,n 为两个不相等的非零实数,则方程mx -y +n =0与nx 2+my 2=mn 所表示的曲线可能是 ( )7.已知M (a,2)是抛物线y 2=2x 上的一定点,直线MP 、MQ 的倾斜角之和为π,且分别与抛物线交于P 、Q 两点,则直线PQ 的斜率为( )A .-14B .-12 C.14 D.128.对于抛物线C :y 2=4x ,我们称满足y 20<4x 0的点M (x 0,y 0)在抛物线的内部,若点M (x 0,y 0)在抛物线的内部,则直线l :y 0y =2(x +x 0)与C( ) A .恰有一个公共点B .恰有两个公共点C .可能有一个公共点也可能有两个公共点D .没有公共点9.若倾斜角为π4的直线交椭圆x 24+y 2=1于A ,B 两点,则线段AB 的中点的轨迹方程是________________________________________________________________________.10.在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.11.已知直线l :y =k (x +1)与抛物线y 2=-x 交于A 、B 两点,O 为坐标原点.(1)若△OAB 的面积为10,求k 的值;(2)求证:以弦AB 为直径的圆必过原点.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过点M 作斜率为k (k ≠0)的直线l ,与抛物线交于A 、B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于点E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3;(3)△PEF 能否成为以EF 为底的等腰三角形?若能,求出此时的k 值;若不能,请说明理由.三、探究与拓展13.已知双曲线方程为2x 2-y 2=2.过定点Q (1,1)能否作直线l ,使l 与此双曲线相交于Q 1,Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出直线l 的方程;若不存在,请说明理由.答案1.D 2.C 3.C4.85.x =0或y =1或y =12x +1 6.C 7.B 8.D 9.x +4y =0 ⎝⎛⎭⎫-455<x <455 10.解 设与椭圆相切并与l 平行的直线方程为y =32x +m , 代入x 24+y 27=1, 并整理得4x 2+3mx +m 2-7=0,Δ=9m 2-16(m 2-7)=0⇒m 2=16⇒m =±4,故两切线方程为y =32x +4和y =32x -4, 显然y =32x -4距l 最近d =|16-8|32+(-2)2=813=81313, 切点为P ⎝⎛⎭⎫32,-74. 11.(1)解 设A (x 1,y 1),B (x 2,y 2),原点O 到直线AB 的距离为d ,联立得⎩⎪⎨⎪⎧ y =k (x +1)y 2=-x ,化简整理得k 2x 2+(2k 2+1)x +k 2=0,由题意知k ≠0,由根与系数的关系得,x 1+x 2=-2k 2+1k 2,x 1x 2=1. 由弦长公式,得|AB |=1+k 2|x 1-x 2| =1+k 2·1k 4+4k 2, 由点到直线距离公式d =|k |1+k 2, 得S △OAB =12|AB |·d =121k 2+4=10,解得k =±16. (2)证明 ∵k OA =y 1x 1,k OB =y 2x 2,∴k OA ·k OB =y 1y 2x 1x 2. ∵y 21=-x 1,y 22=-x 2,∴x 1x 2=(y 1y 2)2,∴k OA ·k OB =1y 1y 2,又⎩⎪⎨⎪⎧y =k (x +1)y 2=-x , 得ky 2+y -k =0,∴y 1y 2=-1,即k OA ·k OB =-1,∴OA ⊥OB ,∴以弦AB 为直径的圆必过原点.12.(1)解 由y 2=-4x 可得准线方程为x =1,∴M (1,0).设l 的方程为y =k (x -1), 联立⎩⎪⎨⎪⎧ y =k (x -1),y 2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0. ∵A 、B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明 设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2, y 3=k ⎝ ⎛⎭⎪⎫x 1+x 22-1=-2k k 2=-2k . 即y +2k =-1k ⎝ ⎛⎭⎪⎫x -k 2-2k 2. 令y =0,x 0=-2k 2-1,∵k 2∈(0,1),∴x 0<-3. (3)解 假设存在以EF 为底的等腰△PEF ,∴点P 在线段EF 的垂直平分线上,∴2x 3=-1+⎝⎛⎭⎫-1-2k 2, ∴2·k 2-2k 2=-2-2k 2,解得k =±22,∴△PEF 可以成为以EF 为底的等腰三角形,此时k 值为±22. 13.解 假设这样的直线l 存在,设Q 1(x 1,y 1),Q 2(x 2,y 2),则有x 1+x 22=1,y 1+y 22=1. ∴x 1+x 2=2,y 1+y 2=2,且⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2 两式相减,得(2x 21-2x 22)-(y 21-y 22)=0, ∴2(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0,∴2(x 1-x 2)-(y 1-y 2)=0.若直线Q 1Q 2⊥Ox ,则线段Q 1Q 2的中点不可能是点Q (1,1),所以直线Q 1Q 2有斜率,于是k =y 1-y 2x 1-x 2=2. ∴直线Q 1Q 2的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧ y =2x -1,2x 2-y 2=2得2x 2-(2x -1)2=2, 即2x 2-4x +3=0,∴Δ=16-24<0.这就是说,直线l 与双曲线没有公共点,因此这样的直线不存在.。
§3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程(一)一、基础过关1.已知A (3,-2,4),B (0,5,-1),若OC →=23AB →,则C 的坐标是 ( ) A.⎝⎛⎭⎫2,-143,103 B.⎝⎛⎭⎫-2,143,-103 C.⎝⎛⎭⎫2,-143,-103 D.⎝⎛⎭⎫-2,143,103 2.已知线段AB 的两端点的坐标为A (9,-3,4),B (9,2,1),则线段AB 与哪个坐标平面平行( ) A .xOyB .xOzC .yOzD .xOy 或yOz3.从点A (2,-1,7)沿向量a =(8,9,-12)的方向取线段长AB =34,则B 点的坐标为( )A .(-9,-7,7)B .(18,17,-17)C .(9,7,-7)D .(-14,-19,31)4.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1、l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =1525.已知A (1,1,-1),B (2,3,1),则直线AB 的模为1的方向向量是________________.6.已知点A (2,3,1),B (-1,6,4),点M 满足2AM →=MB →,则点M 的坐标为__________.7.如图,正四面体A —BCD 中,E 、F 分别是棱BC 、AB 的中点,则EF和平面ACD 的关系是____________.二、能力提升8.已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的条件为( )A.OM →=12OA →+12OB →+12OC → B.OM →=13OA →-13OB →+OC → C.OM →=OA →+OB →+OC →D.OM →=2OA →-OB →-OC →9.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、 BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上结论中正确的是 ( )A .①③④B .①②③④C .①③D .③④10.证明四点A (3,0,5),B (2,3,0),C (0,5,0),D (1,2,5)共面.11.如图,在四棱锥S —ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别为AB 、SC 的中点.证明:EF ∥平面SAD .12.如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中 点.求证:MN ∥平面A 1BD .三、探究与拓展13.如图所示,在正方体AC 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平 面P AO?答案1.B 2.C 3.B 4.D 5.⎝⎛⎭⎫13,23,23或⎝⎛⎭⎫-13,-23,-23 6.(1,4,2)7.EF ∥平面ACD8.B 9.A10.证明 AB →=(-1,3,-5),AC →=(-3,5,-5),AD →=(-2,2,0).∵(-1,3,-5)=(-3,5,-5)-(-2,2,0)∴AB →=AC →-AD →.故四点A 、B 、C 、D 共面.11.证明 如图,建立如图所示的空间直角坐标系.设A (a,0,0),S (0,0,b ),则B (a ,a,0),C (0,a,0),E ⎝⎛⎭⎫a ,a 2,0,F ⎝⎛⎭⎫0,a 2,b 2. EF →=⎝⎛⎭⎫-a ,0,b 2. 取SD 的中点G ⎝⎛⎭⎫0,0,b 2,连接AG , 则AG →=⎝⎛⎭⎫-a ,0,b 2. 因为EF →=AG →,所以EF ∥AG ,又AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD .12.证明 方法一 如图,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,可求得M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1,D (0,0,0),A 1(1,0,1),于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1).得DA 1→=2MN →,∴DA 1→∥MN →,∴DA 1∥MN .而MN 在平面A 1BD 之外,∴MN ∥平面A 1BD .方法二 ∵MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,而MN ⊄平面A 1BD ,∴MN ∥平面A 1BD .13.解 如图所示,分别以DA 、DC 、DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12,A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12,BD 1→=(-1,-1,1),∴OP →∥BD 1→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即AP ∥BQ ,有平面P AO ∥平面D 1BQ ,∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。