《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2第一章 棱柱、棱锥和棱台的结构特征(一)
- 格式:doc
- 大小:153.50 KB
- 文档页数:4
3.2.4 二面角及其度量一、基础过关1.一个二面角的两个面分别平行于另一个二面角的两个面,那么这两个二面角( )A .相等B .互补C .相等或互补D .不确定 2.若分别与一个二面角的两个面平行的向量m =(-1,2,0),n =(1,0,-2),且m 、n 都与二面角的棱垂直,则二面角的正弦值为( ) A.15 B.245 C.14 D.1543.二面角α—l —β中,平面α的一个法向量n 1=⎝⎛⎭⎫32,-12,-2,平面β的一个法向量n 2=⎝⎛⎭⎫0,12,2,则二面角α—l —β的大小为 ( ) A .120°B .150°C .30°或150°D .60°或120° 4.在正方体AC 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的 二面角的余弦值为( )A .-12B.23C.33D.22 5.平面α的一个法向量n 1=(1,0,1),平面β的一个法向量n 2=(-3,1,3),则α与β所成的角是________.6.已知A ∈α,P ∉α,P A →=⎝⎛⎭⎫-32,12,2,平面α的一个法向量n =⎝⎛⎭⎫0,-12,-2,则直线P A 与平面α所成的角为________.二、能力提升7.在边长为1的菱形ABCD 中,∠ABC =60°,将菱形沿对角线AC 折起,使折起后BD =1,则二面角B —AC —D 的余弦值为( )A.13B.12C.233D.32 8.A 、B 是二面角α—l —β的棱l 上两点,P 是平面β上一点,PB ⊥l 于B ,P A 与l 成45°角,P A 与平面α成30°角,则二面角α—l —β的大小是( ) A .30° B .60° C .45° D .75°9.如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线l(库底与水坝的交线)的距离AC和BD分别为a和b,CD的长为c,AB的长为d.水库底与水坝所成二面角的余弦值为________.10.如图,已知四棱锥P—ABCD中,P A⊥底面ABCD,且ABCD为正方形,P A=AB=a,点M是PC的中点.(1)求BP与DM所成的角的大小;(2)求二面角M—DA—C的大小.11.如图,四棱锥F—ABCD的底面ABCD是菱形,其对角线AC=2,BD = 2.CF与平面ABCD垂直,CF=2.求二面角B—AF—D的大小.三、探究与拓展12. 如图,在四棱锥A—BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=2,AB=AC.(1)证明AD⊥CE;(2)设CE与平面ABE所成的角为45°,求二面角C—AD—E的余弦值.答案1.C 2.B 3.C 4.B5.90°7.A 8.C 9.a 2+b 2+c 2-d 22ab10.解 (1)建系如图,由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ.∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角的大小为90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0),BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0.又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22. ∴所求的二面角M —DA —C 的大小为45°.11.解 过点A 作AE ⊥平面ABCD .以A 为坐标原点,BD →、AC →、AE →方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).于是B ⎝⎛⎭⎫-22,1,0, D ⎝⎛⎭⎫22,1,0,F (0,2,2).设平面ABF 的法向量n 1=(x ,y ,z ),则由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-22x +y =0,2y +2z =0.令z =1,得⎩⎪⎨⎪⎧ x =-2,y =-1.所以n 1=(-2,-1,1).同理,可求得平面ADF 的法向量n 2=(2,-1,1).由n 1·n 2=0知,平面ABF 与平面ADF 垂直,所以二面角B —AF —D 的大小等于π2.12. (1)证明 作AO ⊥BC ,垂足为O ,则AO ⊥底面BCDE ,且O 为BC 的中点.以O 为坐标原点,射线OC 为x 轴正方向,建立如图所示的直角坐标系Oxyz .设A (0,0,t ).由已知条件有C (1,0,0),D (1,2,0),E (-1,2,0),CE →=(-2,2,0),AD →=(1,2,-t ),所以CE →·AD →=0,得AD ⊥CE .(2)解 作CF ⊥AB ,垂足为F ,连接FE ,如图所示.设F (x,0,z ),则CF →=(x -1,0,z ),BE →=(0,2,0),CF →·BE →=0.故CF ⊥BE .又AB ∩BE =B ,所以CF ⊥平面ABE ,故∠CEF 是CE 与平面ABE 所成的角,∠CEF =45°,由CE =6,得CF = 3.又CB =2,所以∠FBC =60°,所以△ABC 为等边三角形,因此A (0,0,3). 作CG ⊥AD ,垂足为G ,连接GE .在Rt △ACD 中,求得|AG |=23|AD |. 故G ⎝⎛⎭⎫23,223,33,GC →=⎝⎛⎭⎫13,-223,-33, GE →=⎝⎛⎭⎫-53,23,-33. 又AD →=(1,2,-3),GC →·AD →=0,GE →·AD →=0, 所以GC →与GE →的夹角等于二面角C —AD —E 的平面角.由cos 〈GC →,GE →〉=GC →·GE →|GC →||GE →|=-1010.。
3.1.2 空间向量的基本定理一、基础过关1.“a =x b ”是“向量a 、b 共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是( ) A.AB →+BC →=AC →B.AB →-BC →=AC →C.AB →=BC → D .|AB →|=|BC →| 3.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( ) A .aB .bC .a +2bD .a +2c4.设M 是△ABC 的重心,记BC →=a ,CA →=b ,AB →=c ,则AM →等于( ) A.b -c 2B.c -b 2C.b -c 3D.c -b 35.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________.6.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).二、能力提升7.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A 、B 、DB .A 、B 、C C .B 、C 、D D .A 、C 、D8.在下列等式中,使点M 与点A ,B ,C 一定共面的是( ) A.OM →=25OA →-15OB →-15OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=09.在以下3个命题中,真命题的个数是________.①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面.②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线. ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.10.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,试求实数k 的值.11.如图所示,四边形ABCD 和四边形ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.12.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →、B 1C →、EF →是共面向量.三、探究与拓展13.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A 、E 、C 1、F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .答案1.A 2.C 3.D 4.D 5.215 6.12a +14b +14c7.A 8.C9.210.解 因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2, 又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.11.解 ∵M ,N 分别是AC ,BF 的中点, 而四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →.∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →). ∴CE →=2MN →.∴CE →∥MN →,即CE →与MN →共线.12.证明如图.EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →、B 1C →、EF →是共面向量.13.(1)证明 因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→ =⎝⎛⎭⎫AB →+13AA 1→+(AD →+23AA 1→) =AB →+BE →+AD →+DF →=AE →+AF →,所以A 、E 、C 1、F 四点共面.(2)解 因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→ =-AB →+AD →+13AA 1→. 所以x =-1,y =1,z =13. 所以x +y +z =13.。