数值计算基础复习指导
- 格式:pdf
- 大小:560.05 KB
- 文档页数:23
数值计算期末复习指南(整理版)
本文档旨在为数值计算的期末复提供指导。
以下是一些重要的复要点,帮助您进行有针对性的复。
1. 数值计算的基础知识
- 理解计算机中的数值表示方法和数值精度问题。
- 掌握计算机中数值的舍入误差和截断误差概念。
- 理解机器精度和有效数字的概念,并能计算有效数字。
2. 数值计算中的误差分析
- 熟悉误差分析的基本概念和方法。
- 掌握绝对误差和相对误差的计算方法。
- 理解截断误差和舍入误差在数值计算中的作用和影响。
3. 插值与逼近
- 理解插值和逼近的基本概念。
- 掌握常见的插值方法,如拉格朗日插值、牛顿插值等。
- 了解最小二乘逼近的原理和方法。
4. 数值积分
- 掌握数值积分的基本方法,如梯形公式、辛普森公式等。
- 理解数值积分的误差分析方法。
- 了解自适应积分和复化积分规则。
5. 数值微分方程的求解
- 熟悉常见数值求解常微分方程的方法,如欧拉法、龙格-库塔法等。
- 了解常微分方程初值问题和边值问题的数值求解方法。
- 掌握求解偏微分方程的基本方法。
请注意,本文档仅提供了数值计算复的基本要点,建议您结合教材和课堂笔记进行综合复。
祝您期末复顺利!。
山东省考研数值计算与优化复习指南重点章节解析与习题精选一、引言数值计算与优化是计算机科学与数学相结合的重要领域,它涉及到数值算法和优化方法的研究与应用。
在山东省考研中,数值计算与优化是一个重要的考点,掌握其中的重点章节和习题精选对于备考至关重要。
二、数值计算重点章节解析1.数值计算引论数值计算引论是数值计算与优化课程中的基础,它介绍了数值计算的基本概念、误差分析和舍入误差、数值计算中常见的数值迭代方法等内容。
2.线性方程组的数值解法线性方程组的数值解法是数值计算中的重要内容,它主要包括直接解法和迭代解法两种方法。
直接解法包括高斯消元法、LU分解法等,迭代解法包括雅可比迭代法、高斯-赛德尔迭代法等。
3.非线性方程的数值解法非线性方程的数值解法是数值计算中的另一个重要内容,它主要包括迭代法和牛顿法两种方法。
迭代法是通过不断逼近解的方法求得方程的解,牛顿法则是基于函数的泰勒级数展开进行迭代求解的方法。
4.插值与逼近理论插值与逼近理论是数值计算中的常见方法,它涉及到在给定一些点的情况下,通过某种方式来逼近曲线或曲面。
其中,插值方法包括拉格朗日插值法、牛顿插值法等,逼近方法包括最小二乘法、切比雪夫逼近等。
5.数值积分与数值微分数值积分与数值微分是数值计算中的常见方法,它用于对函数的积分和导数进行数值计算。
其中,数值积分包括梯形求积法、辛普森求积法等,数值微分包括中心差商法、前向差商法等。
6.常微分方程的数值解法常微分方程是数值计算中的重要内容,它涉及到通过数值方法求解常微分方程。
常见的数值解法包括欧拉法、龙格-库塔法等。
三、数值计算习题精选1.线性方程组的数值解法习题(1)使用高斯消元法求解以下线性方程组:2x + y - z = 1x - y + z = 23x + 2y + 2z = 3(2)使用雅可比迭代法求解以下线性方程组:4x - y + z = 42x + 5y + 2z = 1x + y - 6z = 32.非线性方程的数值解法习题(1)使用牛顿法求解方程x^3 - 2x^2 - 11x + 12 = 0的根。
第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。
这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。
2、采用“离散化”方法把连续变量问题转为求离散变量问题。
例:把定积分离散成求和,把微分方程离散成差分方程。
3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。
由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。
4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。
算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。
时间复杂度是算法耗费时间的度量。
算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。
误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。
因而总是近似的,这就产生了误差。
这种数学模型解与实际问题的解之间出现的误差,称为模型误差。
2、观测误差观测到的数据与实际数据之差。
3、截断误差数学模型的准确解与计算方法的准确解之间的误差。
4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。
绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。
定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。
实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。
“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。
2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。
(二) 复习要求1。
了解数值分析的研究对象与特点。
2。
了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。
(三)例题例1. 设x =0.231是精确值x *=0。
229的近似值,则x 有2位有效数字。
例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。
了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。
3。
理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。
4。
掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。
为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。
1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。
2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。
2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。
本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。
数值计算方法复习数值计算方法是数学中的一门重要学科,主要研究如何用数值方法来解决实际问题。
它是一门综合学科,涵盖了数值逼近、插值法、数值积分、数值微分、微分方程数值解等内容。
数值计算方法在科学计算和工程技术中有广泛的应用,它的发展对于实现科学方法的自动化和智能化有着重要的意义。
下面我将对数值计算方法的几个重要内容进行复习。
数值逼近是数值计算方法中的一项基础内容,它涉及到如何用有限的计算资源来逼近一个函数的值。
最简单的逼近方法是线性逼近,即用一条直线来逼近函数。
对于一些函数f(x),我们可以用两个端点处的函数值f(a)和f(b)来确定一条直线y=ax+b。
这就是所谓的线性逼近。
在实际计算中,我们经常遇到的是多项式逼近问题,即用一个多项式来逼近函数。
多项式逼近有多种方法,其中最常用的是最小二乘法。
最小二乘法的基本思想是在给定的数据点上,找出一个多项式,使其在这些点上的残差之和最小。
这个问题可以通过求解一个线性方程组来实现。
插值法是数值计算方法中的另一个重要内容,它涉及到如何用已知数据构造一个与这些数据点相吻合的函数。
常用的插值方法有拉格朗日插值法和牛顿插值法。
拉格朗日插值法是通过一个多项式来逼近已知的数据点,使得这个多项式在已知数据点上的值与给定的数据点吻合。
牛顿插值法是通过差商来逼近已知的数据点,也是一种多项式插值方法。
数值积分是数值计算方法中的重要内容之一,它涉及到如何用数值方法来近似计算一个函数的积分。
常用的数值积分方法有矩形法、梯形法和辛普森法。
矩形法是将积分区间分成若干个小矩形,然后计算这些小矩形的面积之和。
梯形法是将积分区间分成若干个梯形,然后计算这些梯形的面积之和。
辛普森法是将积分区间分成若干个小区间,然后用一个二次多项式来逼近每个小区间上的函数。
数值微分是数值计算方法中的另一个重要内容,它涉及到如何用数值方法来近似计算一个函数的导数。
常用的数值微分方法有向前差商、向后差商和中心差商。
数值计算复习资料数值计算复习资料数值计算是一门研究如何利用计算机来解决数学问题的学科。
它在科学计算、工程设计和金融分析等领域起着重要的作用。
为了更好地复习数值计算知识,我们可以从以下几个方面进行回顾和总结。
一、数值误差与舍入误差在数值计算中,我们常常会遇到数值误差的问题。
数值误差分为绝对误差和相对误差两种类型。
绝对误差是指计算结果与真实值之间的差距,而相对误差则是绝对误差与真实值之比。
舍入误差是由于计算机的有限精度表示而引起的误差,它是数值计算中不可避免的一部分。
为了减小舍入误差,我们可以采取一些常用的数值计算技巧。
例如,可以通过增加计算的位数来提高计算的精度,或者使用更精确的数值表示方法,如浮点数表示法。
此外,还可以采用数值稳定的算法,避免出现数值不稳定性导致的大误差。
二、插值与拟合插值与拟合是数值计算中常用的技术,它们可以用来估计未知函数的值或者在给定数据点之间构造一个函数。
插值是通过已知数据点之间的连线来估计未知点的值,而拟合则是通过一个函数来拟合已知数据点,使得拟合函数与数据点的差距最小。
在插值中,最常用的方法是拉格朗日插值和牛顿插值。
拉格朗日插值使用多项式来逼近已知数据点,而牛顿插值则使用差商来逼近。
在拟合中,最常用的方法是最小二乘法。
最小二乘法通过最小化拟合函数与数据点之间的误差平方和来确定拟合函数的参数。
三、数值积分与数值微分数值积分和数值微分是数值计算中的重要内容,它们可以用来近似计算函数的积分和导数。
数值积分的常用方法包括梯形法则、辛普森法则和龙贝格法则等。
这些方法通过将函数分割成若干小区间,并在每个小区间上用简单的公式来近似计算积分值。
数值微分的常用方法包括中心差分法和前向差分法等。
中心差分法通过计算函数在某一点的左右两侧的斜率来近似计算导数值,而前向差分法则通过计算函数在某一点和相邻点的斜率来近似计算导数值。
四、线性方程组的数值解法线性方程组的数值解法是数值计算中的重要内容,它可以用来求解形如Ax=b的线性方程组,其中A是一个已知的矩阵,b是一个已知的向量。
数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。
它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。
本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。
常见的插值方法有拉格朗日插值和牛顿插值。
2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。
逼近常用的方法有最小二乘逼近和Chebyshev逼近。
二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。
常见的数值微分方法有前向差分、后向差分和中心差分。
2.数值积分:数值积分是通过近似计算定积分的值。
常见的数值积分方法有中矩形法、梯形法和辛普森法。
三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。
常见的直接解法有高斯消元法和LU分解法。
2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。
常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。
四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。
常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。
2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。
这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。
总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。
本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
数值计算方法复习要点1.近似方法的概念和意义:近似方法是指通过一系列逼近计算步骤来得到问题的数值解。
在实际问题中,很多问题无法通过解析方法来求解,数值计算方法提供了一种有效的途径。
近似方法的正确性和稳定性对于数值计算方法的可靠性至关重要。
2.插值方法:插值方法是指通过已知数据点构造一个函数来逼近未知数据点的数值方法。
常见的插值方法有拉格朗日插值和牛顿插值。
在复习插值方法时,需要掌握插值多项式的构造方法和插值误差估计的技巧。
3.数值微分与数值积分:数值微分与数值积分是数值计算方法中的核心内容。
数值微分用于求取函数的导数近似值,常见的数值微分方法有差分法和微分方程法。
数值积分则是用于求取函数的积分近似值,常见的数值积分方法有梯形法则、辛普森法则和高斯积分法则。
4.非线性方程求解:非线性方程求解是数值计算方法中的重要问题之一、常见的非线性方程求解方法有二分法、牛顿法、割线法和试位法等。
在复习非线性方程求解时,要理解这些方法的基本原理和收敛性条件,并学会分析其收敛速度和稳定性。
5.线性方程组求解:线性方程组求解是数值计算方法中的另一个重要问题。
常见的线性方程组求解方法有高斯消元法、LU分解法和迭代法等。
在复习线性方程组求解时,需要理解这些方法的基本原理和收敛性条件,并学会分析其计算复杂度和稳定性。
6.数值解常微分方程:数值解常微分方程是数值计算方法的一个重要应用领域。
常见的数值解常微分方程的方法有欧拉法、改进欧拉法、龙格-库塔法等。
在复习数值解常微分方程时,需要掌握这些方法的基本原理和实现技巧,并学会分析其精度和稳定性。
8.线性插值和非线性插值:线性插值是插值方法的一种简单形式,即通过已知的两个数据点之间的线性关系来逼近未知数据点的值。
非线性插值则是通过已知的多个数据点之间的非线性关系来逼近未知数据点的值。
理解线性插值和非线性插值的原理和应用场景对于选择合适的插值方法具有重要意义。
以上是数值计算方法复习的一些重点要点,通过理解和掌握这些要点,可以为进一步深入学习和应用数值计算方法奠定基础。
数值计算方法复习知识点数值计算是计算机科学的一个重要分支,它研究如何使用计算机来进行数值计算和数值模拟。
在实际应用中,许多问题无法用解析表达式求解,只能通过数值计算方法来近似求解。
因此,数值计算方法的学习对于掌握计算机科学和工程中的相关问题具有重要意义。
1.插值与拟合插值是通过已知数据点构造出一个函数,使得该函数在已知数据点上的取值与给定数据点相同。
常用的插值方法有拉格朗日插值和牛顿插值。
拟合是通过已知数据点,在一定误差范围内,用一个函数逼近这些数据点的过程。
最小二乘法是一种常用的拟合方法。
2.数值积分数值积分是通过数值计算方法对定积分进行近似求解的过程。
常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则。
3.数值微分数值微分是通过数值计算方法来计算函数的导数。
常用的数值微分方法有前向差分法和中心差分法。
4.常微分方程数值解常微分方程是研究自变量只有一个的微分方程。
常微分方程数值解是通过数值计算方法来求解常微分方程的近似解。
常用的常微分方程数值解方法有欧拉法、改进欧拉法和龙格-库塔法等。
5.线性方程组的数值解法线性方程组是一个包含多个线性方程的方程组。
线性方程组的数值解法主要包括直接法和迭代法。
直接法是通过一系列代数运算直接求解出方程组的解,常用的直接法有高斯消元法和LU分解法。
迭代法是通过一系列迭代运算逐步逼近方程组的解,常用的迭代法有雅可比迭代法和高斯-赛德尔迭代法等。
6.非线性方程的数值解法非线性方程是含有未知数的函数与该未知数的组合线性关系不成立的方程。
非线性方程的数值解法包括二分法、牛顿法和割线法等。
7.特征值与特征向量特征值和特征向量是矩阵理论中的重要概念。
特征值是矩阵运算中的一个标量,特征向量是矩阵运算中的一个向量。
特征值和特征向量的计算可以通过幂法、反幂法和QR分解等数值计算方法来实现。
8.插值和误差分析插值方法的误差分析是指通过数值计算方法来分析插值近似值与精确值之间的误差大小。
数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。
它包括数值计算、数值逼近、数值求解以及数值模拟等内容。
本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。
一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。
2. 机器精度:机器数、舍入误差、截断误差等等。
3. 数值稳定性:条件数、病态问题等等。
4. 误差分析:前向误差分析、后向误差分析等等。
二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。
2. 曲线拟合:最小二乘法、Chebyshev逼近等等。
3. 数值微分:前向差分、后向差分、中心差分等等。
4. 数值积分:梯形法则、Simpson法则等等。
三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。
2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。
3. 特征值和特征向量:幂法、反幂法、QR分解法等等。
4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。
四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。
2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。
3. 数值优化方法:线性规划、非线性规划、整数规划等等。
五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。
2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。
3. 其他数值计算软件:Python、R、Octave等等。
总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。
在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。
数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。
《数值计算方法》复习资料第一章数值计算方法与误差分析第二章非线性方程的数值解法第三章线性方程组的数值解法第四章插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法自测题课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
知道四则运算中的误差传播公式。
3.三例题*= =3.1415926…设x例11,即m=1,它的绝对误差是100.314×-0.001 592 6…,有近似值x=3.14=即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:9 0009 000.002.000 4 -0.002 00115―,即×10 它的绝对误差限, 0.000 05=0.5=解因为x=2.000 40.200 04×101,相对误差限a=25=2.000 4有位有效数字. m=1,n=5,故x1x=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x=-0.002 00有3位有效22=?,相对误差限数字. a=2=0.002 5r10,因为m=4, n=4, x,=9×,绝对误差限为=9 000x0.510a位有效数字,4有=9 00033.=0.000 056相对误差限?=rx=9 000.00,绝对误差限0.005,因为m=4,n=6,x=9 000.00有6位有效数字,相44=?0.000 000 56对误差限为=r由x与x可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 433-的近似值是多少?ln2=0.69314718…,精确到10 例33-满足,x0.001,意旨两个近似值精确到,由于近似值解10x=21,近似值的绝对误差限应是?要求满足=0.0005,都是四舍五入得到的,故至少要保留小数点后三位才可以。
数值计算方法复习要点数值计算方法是计算机科学中常用的一类方法,主要用于在计算机上对数值进行精确的计算和近似的计算。
数值计算方法的核心是数值计算技术,它包括离散化方法、插值方法、数值微积分和数值代数等。
本文将复习数值计算方法的要点,总结为以下几个方面。
一、离散化方法离散化是指将连续问题转化为离散问题的方法,在数值计算中广泛应用。
其基本思想是将连续问题的数学模型用离散点来逼近。
常用的离散化方法有有限差分法和有限元法。
1.有限差分法:将微分方程转化为差分方程,通过计算差分方程的数值解来近似原微分方程的解。
-常见的差分格式有向前差分、向后差分和中心差分。
-一阶导数的差分近似公式有一阶向前差分公式和一阶中心差分公式。
-二阶导数的差分近似公式有二阶中心差分公式。
2.有限元法:将连续问题的域划分为有限个子域,构建一个适当的函数空间,在每个子域上选择一个适当的试函数进行逼近。
-有限元法的基本步骤包括离散化、建立有限元方程、计算有限元解和后处理。
二、插值方法插值方法是一种用已知数据构造出逼近其中一种连续函数的近似函数的方法,它可以用于求解函数值,也可以用于构造近似函数。
1.拉格朗日插值多项式:给定n+1个互不相同的节点,可以构造出一个n次多项式,该多项式在这n+1个节点上取得实际值。
2.牛顿插值多项式:给定n+1个节点和与这些节点对应的函数值,可以通过差商构造一个n次多项式。
3.线性插值:在相邻的两个节点之间,用线性函数来逼近目标函数。
三、数值微积分数值微积分主要包括数值求导和数值积分两个方面。
1.数值求导:通过差分方法,计算函数在其中一点的导数近似值。
-前向差分法和后向差分法是一阶求导的差分方法。
-中心差分法是一阶求导的更精确的方法。
2.数值积分:通过数值方法计算函数的定积分或不定积分的近似值。
-区间分割方法是一种常见的数值积分方法,如梯形法则、辛普森法则和复化求积公式等。
-变换方法是另一种常见的数值积分方法,如换元积分法和对称性积分法等。