第十二讲 工具变量回归(1)
- 格式:ppt
- 大小:324.00 KB
- 文档页数:24
工具变量回归简约式回归
《关于工具变量回归和简约式回归的那些事儿》
嘿呀,今天咱来说说工具变量回归和简约式回归这俩家伙。
就好比我上次去菜市场买菜吧,我想买点西红柿。
我就在那一堆西红柿面前挑啊挑,我发现有些西红柿看着红彤彤的特别诱人,但有些呢就有点青一块红一块的。
这就像我们的数据啊,有好的数据,也有不那么完美的数据。
我挑西红柿的时候,我会根据它的颜色、形状这些来判断它好不好,这就像是工具变量回归,通过一些相关的因素来找到我们想要的那个关系。
而简约式回归呢,就像是我直接看这个西红柿整体给我的感觉,不纠结那么多细节,就大致判断一下。
有时候啊,我可能会因为一个西红柿长得特别好看就买了它,而忽略了它可能有点软,不太新鲜。
这就跟我们在分析数据的时候一样,可能只看到了表面的一些联系,而没考虑到更深层次的因素。
哎呀,反正就是这么回事儿啦,工具变量回归和简约式回归在我们生活中好多地方都能找到影子呢,就像我买菜挑西红柿一样平常又有趣。
希望我这么说能让大家更好地理解它们呀!哈哈!。
解释工具变量法的两阶段回归结果工具变量法是一种用于解决因果推断时,由于内生性问题而引起的估计偏差的方法。
在实际研究中,有时候想要探究的变量与一些重要的控制变量之间存在内生性,如果直接使用普通最小二乘法来估计,所得结果会由于内生性而产生偏差,使得推断结果不可靠。
此时,如果使用工具变量法来引入一个外生性足够强的工具变量,便可以解决内生性问题,得到比较可靠的估计结果。
工具变量法的主要思路是,通过在原方程中引入一个或多个与内生性变量相关、但本身不受其他内生因素影响的外生性变量,作为工具变量,用工具变量代替内生性变量来消除内生性问题。
具体而言,工具变量法需要进行两次回归,第一次回归的目的是估计工具变量和内生性变量之间的关系,第二次回归的目的则是将工具变量代入原方程,从而得到消除内生性问题后的估计结果。
例如,我们想要研究一个人的受教育程度对其收入的影响,但由于家庭背景等难以观测的因素可能会影响到受教育程度和收入之间的关系,造成内生性问题。
此时,可以引入父母教育水平作为工具变量,因为父母教育水平与个人受教育程度相关,但本身又不直接影响个人收入。
第一次回归得到父母教育水平对个人受教育程度的影响系数,第二次回归则用父母教育水平代替个人受教育程度,得到消除内生性问题后的受教育程度对收入的影响系数。
工具变量法的两阶段回归结果主要包括两个方面:第一阶段结果和第二阶段结果。
第一阶段结果包括引入工具变量与内生性变量之间的回归结果,包括工具变量与内生性变量的回归系数、截距项以及回归结果的显著性检验。
第二阶段结果则是用第一阶段得到的工具变量代入原方程后得到的估计结果,包括受教育程度对收入的影响系数、截距项以及估计结果的显著性检验。
总之,工具变量法是一种有效的解决内生性问题的方法,通过引入外生性足够强的工具变量进行两阶段回归,可以消除内生性问题,得到比较可靠的因果推断结果。
两阶段回归结果的解释可以通过第一阶段和第二阶段的回归结果进行,从中可以得到受教育程度与收入之间的真实影响关系。
工具变量是什么,以及如何用Eviews跑有工具变量的回归_
工具变量这个东东貌似在斯蒂芬列维特(Steven Levitt,魔鬼经济学的作者)得了克拉克奖以后就很有名。
不过这个东西其实应用起来并不需要很高的难度,所谓工具变量,说白了,就是在要解释的变量和用来解释它的变量之间存在相互因果关系的时候,给用来解释的一方加上的“壳子”,让反向的,我们不需要的因果关系被“屏蔽”,留下我们想要的正向因果关系。
具体的例子比如,衡量某市的犯罪率与警力配备的关系,直接做OLS,得到系数为正,于是得到警察越多,犯罪越多的奇怪结论。
这可能是因为城市本来也会在犯罪率比较高的街区多配备警力造成的,或者是由于这个街区人口比较多,所以政府部门相对比较大,雇用各种员工都比较多,自然也会有比较多警察。
要解决这个问题,可以用消防队员人数作为工具变量:消防队员人数和警察人数一般有一定正比关系,但和犯罪率无关。
我们分成两步做这个模型,第一步把警察人数作为被解释变量,消防队员作为解释变量作一次OLS,第二步把第一部里OLS对警察的“预测值”作为解释变量,代替原来的警察人数对犯罪率做回归,因为这个新的解释变量是用消防队员人数“包裹”起来的,所以就消除了犯罪率导致警力上升的因果关系,就可以得到一个基本消除“内生性”(互为因果)的模型,也是著名的“两步最小方差”(2 stages least square, 2SLS).
这个方法在Eviews里的实现比上述还要简单,只要在estimate equation的回归方法下拉栏步选LS/NLS,选择2SLS就可以了,然后在Instrumental Variable里填入IV对应的序列名字,结果就会直接出来。
工具变量法一.为什么需要使用工具变量法?当模型存在内生解释变量问题,一般为以下三种情形:(1)遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。
否则,就会造成解释变量与残差项相关,从而引起内生性问题。
(2)解释变量与被解释变量相互影响(3)度量误差 (measurement error ):由于在关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。
Ex :i 01122Y i i k ik i X X X ββββμ=+++⋅⋅⋅++ 其中:X 2为内生解释变量 当22Cov(X ,)=E[X ]0i i i i μμ≠时,内生解释变量与随机干扰项同期相关。
此时会导致回归参数估计量是有偏的且不一致,需要用工具变量法进行回归。
二.如何使用工具变量? (一)判断是否需要用工具变量当存在内生性变量时,则需使用工具变量,所以需要对内生性变量进行检验。
在实践中,往往是通过经济学理论先说明是否存在内生性变量,最后再通过检验证明确实存在内生变量。
(1)豪斯曼检验(Hausman )原假设H 0:所有解释变量均为外生变量将内生解释变量关于工具变量与外生变量进行OLS 回归估计 记录残差序列(^^IV OLS ββ−),加入原模型后进行OLS 估计 结果:若差值依概率收敛于0,接受原假设;反之,拒绝。
(2)杜宾-吴-豪斯曼检验(DWH )注:存在异方差的情况下传统豪斯曼检验不适用。
回归模型:'1122y x x ββε=++ z=(x 1,z 2) 第一阶段回归:''21x x z v γδ=++ 检验扰动项v 与ε相关性模型:=v+ερξ 其中:ρ为ε对v 回归系数,ε与v 不相关则ρ=0. 对 ^'''1122y=x x v e ββρ+++ 回归 对原假设H 0:ρ=0. 进行t 检验。
stata工具变量二阶段回归结果解读-回复如何解读Stata工具变量二阶段回归结果。
引言:Stata是一种统计分析软件,广泛用于社会科学研究中的定量分析。
工具变量(Instrumental Variables,IV)方法是回归分析中常用的一种技术,用于解决内生性问题。
内生性是指解释变量和错误项之间存在相关性,而工具变量方法通过引入一个或多个工具变量来帮助解决这个问题。
本文将详细介绍在Stata中进行工具变量二阶段回归的步骤,并解读其结果。
第一步:拟合第一阶段回归模型工具变量方法包括两个阶段,首先我们需要拟合第一阶段回归模型。
在第一阶段回归中,我们将内生变量(即存在内生性问题的解释变量)作为因变量,将所有的解释变量以及工具变量作为自变量。
在Stata中,使用regress命令进行回归分析,命令格式为:regress 内生变量解释变量工具变量。
得到结果后,我们需要查看模型的拟合度以及回归系数的显著性。
第二步:检验工具变量的有效性在拟合第一阶段回归模型后,我们需要检验所引入的工具变量的有效性。
主要有两种方法可以进行检验:第一种是检验工具变量和内生变量的相关性,如果相关性显著,则说明工具变量是有效的;第二种是检验工具变量和误差项的相关性,如果相关性为零,则说明工具变量是有效的。
在Stata中,我们可以使用ivreg2命令进行工具变量的有效性检验,命令格式为:ivreg2 内生变量解释变量工具变量。
得到结果后,我们需要查看工具变量的显著性,如果显著,则说明工具变量是有效的。
第三步:拟合第二阶段回归模型在确认工具变量的有效性后,我们可以进行第二阶段回归模型的拟合。
在第二阶段回归模型中,我们将内生变量以及其他解释变量作为自变量,将工具变量的预测值作为仪器变量。
在Stata中,使用ivregress命令进行工具变量二阶段回归,命令格式为:ivregress 2sls 内生变量解释变量工具变量。
得到结果后,我们需要查看模型的拟合度以及回归系数的显著性。
工具变量法(一):2SLSGive me a lever long enough and a place to stand, and I will move the world. -- Archimedes实证研究的常见问题之一为“内生性”(endogeneity),即解释变量与扰动项相关。
研究者通常要花很大精力来解决内生性问题,而工具变量法则是解决内生性的常用利器。
内生性及其后果考虑最简单的一元线性回归模型:其中,为被解释变量,为解释变量,与为待估计的未知参数,下标表示个体(比如,第个企业),为随机扰动项(包含除外影响的所有其他因素),而为样本容量。
内生性意味着解释变量与扰动项相关,即如果存在内生性,则称解释变量为“内生变量”(endogenous variable);反之,则称为“外生变量”(exogenous variable)。
内生性的严重后果是使得OLS估计量不一致(inconsistent),即无论样本容量多大,OLS 估计量也不会收敛至真实的参数值。
工具变量的思想工具变量的思想其实很简单。
虽然内生变量是“坏” 的变量(与扰动项相关),但仍可能有“好” 的部分(与扰动项不相关的部分),正如坏人通常也有好的一面。
如果能将内生变量分解为内生部分与外生部分之和,则可能使用其外生部分得到一致估计。
而要实现这种分离,通常需要借助另一变量,比如,称为“工具变量”(Instrumental Variable,简记IV),因为它起着工具性的作用。
显然,并非任何变量都可以作为工具变量。
首先,变量要能够帮助内生变量分离出一个外生部分,则变量自身必须是“干净”的,即满足“外生性”(与扰动项不相关):其次,变量还须与有一定关系,即满足“相关性”(与相关):寻找内生变量的外生部分假设找到内生变量的有效工具变量,则可将对进行 OLS 回归,从而分离出的外生部分:此回归称为“第一阶段回归”(first stage regression)。
工具变量系数和基准回归
工具变量系数和基准回归是经济学中常用的两个概念,下面将对它们进行解释。
1. 工具变量系数
工具变量系数是经济学中用于解决内生性问题的一种方法。
内生性是指某些解释变量与误差项具有相关关系,从而导致OLS估计结果不准确。
工具变量系数的核心思想是利用一个或多个无关联的变量(即工具变量)来代替内生变量,从而消除了内生性问题。
工具变量系数是利用工具变量来进行所需变量的估计,它可以通过2SLS(Two-stage least squares)方法来实现。
2SLS方法中,首先通过工具变量进行回归,得到工具变量的系数,接着将工具变量的系数带入原有方程中,得到所需变量的系数。
这样得到的估计结果是无偏且一致的。
2. 基准回归
基准回归是指在进行其他分析前,先进行一次简单的线性回归,以确定变量间的基本关系。
基准回归通常是用来解释某些变量对一个因变量的影响,并且通常是第一步,是其他分析的基础。
基准回归的目的是为了确定需要控制的变量,以使其他分析结果更准确。
基准回归的
特点是回归方程简单,包含少量变量,通常是目标变量与一个或多个影响因素之间的关系。
在实际研究中,通常是通过基准回归来确定需要控制的变量,然后再使用工具变量系数来解决内生性问题。
基准回归可以帮助我们确定主要的关键变量,以及哪些变量需要控制,而工具变量系数可以帮助我们消除内生性问题,提高回归结果的准确性和可靠性。
一、介绍在经济学和社会科学中,研究者经常面临内生性问题,即某些变量可能同时影响解释变量和被解释变量,在回归分析中会引起估计量偏误。
为了解决内生性问题,研究者可以使用工具变量方法来进行分析。
而在使用Stata软件进行工具变量二阶段回归分析时,需要对回归结果进行准确解读,以确保研究结论的科学性和可靠性。
二、Stata中工具变量二阶段回归的基本步骤1. 数据准备:需要将数据导入Stata软件中,并对数据进行清洗和预处理,以确保数据的准确性和完整性。
2. 第一阶段回归:在进行工具变量回归之前,需要进行第一阶段回归,即使用工具变量对内生变量进行回归。
在Stata中,可以使用ivreg命令进行第一阶段回归,该命令可以同时进行内生变量的工具变量选择和回归分析。
3. 二阶段回归:在完成第一阶段回归后,可以使用ivreg2命令进行工具变量二阶段回归,该命令可以输出各项回归结果,包括工具变量系数、内生变量系数和其他控制变量系数等。
三、Stata工具变量二阶段回归结果的解读在Stata中进行工具变量二阶段回归后,需要对回归结果进行准确解读,以得出科学可靠的研究结论。
1. 工具变量系数的解读:工具变量系数反映了工具变量对内生变量的影响程度,其显著性检验结果可以帮助研究者判断所选择的工具变量是否有效,从而保证工具变量回归的可靠性。
2. 内生变量系数的解读:内生变量系数反映了内生变量对被解释变量的影响程度,其显著性检验结果可以帮助研究者判断内生变量的影响是否显著,从而得出相应的研究结论。
3. 控制变量系数的解读:除了工具变量和内生变量外,工具变量二阶段回归模型中还包括其他控制变量,其系数反映了控制变量对被解释变量的影响程度,研究者需要注意对控制变量系数进行解读,以准确评估其对研究结果的影响。
4. 残差分析:在进行工具变量二阶段回归后,研究者还需要对回归残差进行分析,以验证回归模型的合理性和稳健性,包括残差的正态性、异方差性和自相关性等。