高中数学 第2章 圆锥曲线与方程 第14课时 圆锥曲线的共同性质教案 苏教版选修1-1
- 格式:doc
- 大小:130.50 KB
- 文档页数:24
圆锥曲线的共同性质一、学习目标:掌握圆锥曲线的共同性质,理解离必率、焦点、准线的意义。
二、学习重点:圆锥曲线第二定义的推导学习难点:对圆锥曲线第二定义的理解与运用三、知识链接学习椭圆、双曲线、抛物线存在一些困惑1、椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别较大2、离心率:椭圆0<e <1 ,双曲线e >1, 抛物线有没有离心率?什么曲线的离心率等于1?四、学习过程(一)、探究圆锥曲线的统一定义问题1、在推导椭圆的标准方程时,我们曾经得到这样一个式子222)(y c x a cx a +-=-,将其变形为ac x c a y c x =-+-222)(,你能解释这个式子的几何意义吗?问题2、已知点P (x ,y )到定点F (c ,0)的距离与到定直线l:x = a 2c 的距离之比是常数c a(a >c >0),求点P 的轨迹方程.变式 将条件a >c >0改为c >a >0呢?圆锥曲线的统一定义:平面内到一定点F 的距离和到一定直线l (F 不在l 上)的距离比为常数e (不等于)的动点P 的轨迹。
其中e 是圆锥曲线的 ,定点F 是圆锥曲线的 ,定直线l 是圆锥曲线的 。
例1:求下列曲线的焦点坐标和准线方程例2:已知双曲线1366422=-y x 上一点P 到左焦点的距离为14,求P 点到右准线的距离.22(1)24x y +=22(2)24y x -=2(3)0x y +=2=的焦点,点M 在抛物线上例3:若点A 的坐标为(3,2),F 为抛物线xy2移动时求|MA|+|MF |的最小值,并求这时M 的坐标.五、基础达标1.填表2.中心在原点,准线方程为4±=x ,离心率为 21的椭圆方程是 3.设双曲线的两条准线把两焦点间的线段三等分,则此双曲线的离心率为 .4.已知A (-1,1),B (1,0),点P 在椭圆13422=+y x 上运动,求|PA|+2|PB|的最小值。
§2.5 圆锥曲线的共同性质【教学目标】1、知识目标圆锥曲线统一定义及其应用。
2、能力目标(1)分析圆锥曲线之间的共同点,培养归纳总结的能力。
(2)利用圆锥曲线定义之间的联系,找到共同的解决问题的方法,培养类比联想的能力。
(3)解题过程中,培养学生运算与思维能力。
3、情感目标(1)在寻求圆锥曲线定义与解题方法之间共同点的过程中,培养学生用“普遍联系”的观念分析事物。
(2)讨论的过程中,培养合作精神,树立严谨的科学态度。
【教学重点】圆锥曲线统一定义及其应用【教学难点】圆锥曲线统一定义及其应用【教学手段】多媒体演示【教学过程】一、情境设计学习椭圆、双曲线、抛物线存在一些困惑?1、椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别较大2、离心率:椭圆0<e <1 ,双曲线e >1, 抛物线有没有离心率?什么曲线的离心率等于1?二、新课讲解1、思考:平面内到一定点F 的距离和到一定直线l (F 不在l 上)的距离比为常数(不等于1)的动点P 的轨迹是什么?(多媒体演示)2、在推导椭圆的标准方程时,我们曾经得到这样一个式子你能解释这个式子的几何意义吗?3、例1:已知点P (x ,y )到定点F (c ,0)的距离与到定直线l :x =a 2c 的距离之比是常数c a (a >c >0),求点P 的轨迹.变式 将条件a >c >0改为c >a >0呢?4、圆锥曲线的统一定义:5、学生活动,讨论并解决以下问题2a cx -=c a x c =-(1)椭圆和双曲线有几条准线?(2)准线方程分别是什么?三、知识运用:1、练习练习1:求下列曲线的焦点坐标和准线方程2、例2 :已知双曲线 上一点P 到左焦点的距离为14,求P 点到右准线的距离.3 (备用)例3:已知A (-1,1),B (1, 0),点P 在椭圆 上运动,求|PA |+2|PB |的 最小值。
四、小结1.圆锥曲线的统一定义2.求点的轨迹的方法3.数形结合的思想五、作业22(1)24x y +=22(2)24y x -=2(3)0x y +=2216436x y -=22x 143y +=。
2.5圆锥曲线的共同性质教学过程一、问题情境我们知道,平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于1的动点P 的轨迹是抛物线.当这个比值是一个不等于1的常数时,动点P的轨迹又是什么曲线呢?二、数学建构问题1试探讨这个常数分别是和2时,动点P的轨迹.方案1利用尺规作出几个特殊的点,从而猜想轨迹.方案2利用几何画板制作课件演示.可以得到:当常数是时,动点P的轨迹是椭圆;当常数是2时,动点P的轨迹是双曲线.问题2由上面问题的解决,同学可以猜想得出什么样的结论?解平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于e的动点P的轨迹是圆锥曲线.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.问题3以上的结论是否正确呢?如何证明?解当e=1时,结论在抛物线标准方程的推导中已经得到证明,那么其他两种情况如何通过方程来证明呢?(思考片刻继续引导)关键在于如何建立坐标系才能使得轨迹的方程为标准方程.(思考片刻继续引导)请同学们阅读教材第55页的思考后回答下面问题.问题4当0<e<1时,如何建立平面直角坐标系,才能使轨迹方程为标准方程呢?解建立适当的平面直角坐标系,使定点F(c,0),定直线l的方程为x=.设点P(x,y),则==e,化简得(a2-c2)x2+a2y2=a2(a2-c2)(*).因为e=∈(0,1),所以a2-c2>0,所以可令b2=a2-c2,这样方程(*)可化为+=1(a>b>0).这就证明了,当0<e<1时,点P的轨迹为椭圆.由此可见,当点P到定点F(c,0)的距离和它到定直线l:x=的距离的比是常数(a>c>0)时,这个点的轨迹是椭圆,方程为+=1(a>b>0, b2=a2-c2),这个常数就是椭圆的离心率.类似地,我们可以得到:当点P到定点F(c,0)的距离和它到定直线l:x=的距离的比是常数(c>a>0)时,这个点的轨迹是双曲线,方程为-=1(a>0,b>0,其中b2=c2-a2),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.由前面的研究可知:点F(c,0),直线l:x=分别为椭圆+=1(a>b>0)的焦点、准线;点F(c,0),直线l:x=分别为双曲线-=1(a>0,b>0)的焦点、准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,中心在坐标原点,焦点在x轴上的椭圆+=1(a>b>0)或双曲线-=1(a>0,b>0),与焦点F1(-c,0),F2(c,0)对应的准线方程分别为x=-,x=. 三、数学运用【例1】求下列曲线的焦点坐标、准线方程:(1)25x2+16y2=400;(2)x2-8y2=32;(3)y2=16x.引导学生将曲线方程转化为标准形式,再让学生根据定义求解.解(1) 由25x2+16y2=400,得+=1,因此此椭圆的焦点在y轴上,且a=5,b=4,所以c==3,故曲线25x2+16y2=400的焦点坐标为(0,±3),准线方程为y=±.(2)由x2-8y2=32,得-=1,因此此双曲线的焦点在x轴上,且a=4,b=2,所以c==6,故曲线x2-8y2=32的焦点坐标为(±6,0),准线方程为x=±.(3)由y2=16x,得p=8,故曲线y2=16x的焦点坐标为(4,0),准线方程为x=-4.要求圆锥曲线的准线方程、焦点坐标,必须先将曲线方程化为标准形式.变式已知椭圆+=1的一条准线方程为y=,求实数m的值.解由题意可知,a2=m(m>9),b2=9,所以c=.由一条准线方程为y=可知=,解得m=25或m=.【例2】已知椭圆+=1上一点P到右准线的距离是2b,求点P到椭圆左焦点的距离.引导学生根据圆锥曲线的统一定义,将点到准线的距离转化为其到相应焦点的距离.解法一由题意知,该椭圆的左、右焦点分别是(-b,0),(b,0),离心率为.设该椭圆的左、右焦点分别为F1,F2,则由圆锥曲线的统一定义可知,=,所以PF2=3b.由椭圆的定义可知,PF1=4b-3b=b,即该点到椭圆左焦点的距离为b.解法二由题意知,该椭圆的左、右焦点分别是(-b,0),(b,0),离心率为.设该椭圆的左、右焦点分别为F1,F2.因为椭圆两准线间的距离为b,所以P到左准线的距离为b,则由圆锥曲线的统一定义可知,=,所以PF1=b,即该点到椭圆左焦点的距离为b.椭圆和双曲线分别有两个焦点和两条准线,在解题过程中要注意对应,即左焦点对应左准线,右焦点对应右准线(或上焦点对应上准线,下焦点对应下准线).【例3】已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与C相交于A,B两点.若=3,求斜率k的值.解设直线l为椭圆的右准线,e为离心率.如图,分别过A,B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E.由圆锥曲线的共同性质得AA1=,BB1=,由=3,得AA1=,所以cos∠BAE====,所以sin∠BAA1=,所以tan∠BAA1=,即k=.(例3)【例4】若椭圆+=1内有一点P(1,-1),F为其右焦点,椭圆上有一点M使MP+2MF最小,则点M的坐标为.提示因为椭圆的离心率为,则2MF就等于点M到右准线的距离d,所以MP+2MF=MP+d.由点到直线的最短距离是垂线段得可以得到M.先用圆锥曲线的统一定义将MP+2MF的最小值转化为MP+d(d为点M到右准线的距离)的最小值,再根据“点到直线的距离中垂线段最短”将问题解决.这是处理圆锥曲线中与曲线上的动点到焦点(或准线)的距离有关的最值问题的常用方法.四、课堂练习1. 若抛物线的顶点在原点,准线与椭圆+=1的准线重合,则此抛物线的方程为y2=±16x.提示由题意知椭圆的准线方程为x=±=±4,所以=±4,即p=±8.2. 已知椭圆+=1上一点P到左焦点的距离为12,则点P到右准线的距离为10.提示由题意知点P到左准线的距离为=15,两准线间的距离为2×=25,故点P到右准线的距离为10.3.已知F1,F2分别为双曲线C:-=1(a,b>0)的左、右焦点,曲线C的两条准线分别与x轴交于点A,B.若A,B为线段F1F2的三等分点,则此双曲线C的离心率为.提示由题意得=3,即e2=3.4.已知P为椭圆C:+=1上一点,且P到曲线C的右焦点F的距离为3,求点P的坐标.解法一椭圆C:+=1的右焦点为F(2,0),设P(x,y),则由题意可知解得即点P的坐标为(2,±3).解法二椭圆C:+=1的右准线的方程为x=8,离心率e=.因为P到曲线C的右焦点F的距离为3,所以P到右准线的距离为6.设P(x,y),则8-x=6,解得x=2,代入+=1,得y=±3,所以点P的坐标为(2,±3).五、课堂小结1.圆锥曲线的统一定义.2.会根据圆锥曲线的标准方程求准线方程.3.掌握圆锥曲线上的点到焦点的距离及该点到对应准线的距离之间的相互转化.。
2.5圆锥曲线的共同性质教学目标:(1)掌握圆锥曲线的共同性质,理解离心率、焦点、准线的意义(2)通过观察、类比、归纳总结得出圆锥曲线的共同性质(3)通过本节的学习,可以培养我们观察、猜想、归纳、推理的能力重点:圆锥曲线第二定义的推导难点:对圆锥曲线第二定义的理解与运用一.知识回顾二.数学探究问题1:圆锥曲线有什么共同性质?它们的离心率有什么联系?从抛物线的定义出发来研究:1.抛物线22(0)y px p=>离心率e=1:准线方程:2.椭圆22221(0)x ya ba b+=>>的离心率0<e<1:准线方程:3.双曲线22221(0,0)x ya ba b-=>>的离心率e>1:准线方程:三.数学应用例1:已知动点P(,)x y满足到定直线l的距离和它到定点F,那么动点P的轨迹是_________________.例2:若椭圆22141x ym+=+的一条准线为5y=,则m=________.例3:已知动点P (,)x y 那么动点P 的轨迹是什么?问题2:椭圆22221(0)y x a b a b +=>>和双曲线22221(0,0)y x a b a b-=>>的准线方程各是什么?练习:求下列曲线的准线方程:(1)2222153x y += (2)22416x y += (3)22832x y -= (4)224x y -=-(5)216y x = (6)23x y =-例4.在椭圆22143x y +=内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求这个最小值.1.双曲线22145y x -=的准线方程是____________.2.已知平面内动点P 到一条定直线l 的距离和它到定点F 的距离的比等于12,则点P 的轨迹是__________.3.椭圆221259x y +=上一点到其左准线的距离等于52,则P 到右焦点的距离等于_______4.以椭圆2212x y +=的右准线为准线的抛物线的标准方程是___________.问题探究:设A 11(,)x y ,229(4,),(,)5B C x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“AF,BF,CF 成等差数列”是“128x x +=”的____________条件.课堂小结:1.知识小结:2.数学思想方法:1. 双曲线22134x y +=的准线方程为____________,两准线间的距离为_____________. 2. 椭圆2255x ky +=的一条准线方程为52y =,那么k =__________. 3. 若抛物线28y x =的准线是椭圆221(0)2x y m m+=>的一条准线,则m =_______. 4. 已知点P 是椭圆22110036x y +=上的一点,若点P 到椭圆右准线的距离是172,则点P 到左焦点的距离是__________.5. 若双曲线的一条准线与两条渐近线交点确定的线段长恰好等于双曲线的实半轴长,则双曲线的离心率为__________________.6. 已知定点F (-4,0),动点P (,)x y 到F 的距离是P 到定直线25:4l x =-的距离的45倍,则点P 的轨迹方程为___________.7. 若抛物线2y x =上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为_____.8. 3x y =+-表示的曲线是________________.9. 求圆心在抛物线22y x =上且与x 轴及抛物线的准线都相切的圆的方程.10.已知椭圆221259x y +=的左焦点为F ,点P 在椭圆上,且1()2OQ OP OF =+u u u r u u u r u u u r ,4OQ =u u u r ,求点P 到椭圆左准线的距离d .。
第二章 圆锥曲线与方程
第14课时 圆锥曲线的一路性质
教学目标:
1.了解圆锥曲线的统一概念;
2.掌握按照标准方程求圆锥曲线的准线方程的方式.
教学重点:
圆锥曲线的统一概念
教学难点:
圆锥曲线的准线方程
教学进程:
Ⅰ.问题情境
Ⅱ.建构数学
圆锥曲线的统一概念:
Ⅲ.数学应用
例1:点M 与必然点F(c ,0)的距离和它到必然直线x =c a 2(0>>c a )的距离的比是a
c ,求点M 的轨迹方程,并说明轨迹是什么图形.
练习:点M 与必然点F(c ,0)的距离和它到必然直线x =c a 2(0>>a c )的距离的比是a
c ,求点M 的轨迹方程,并说明轨迹是什么图形.
例2:点P 与必然点F(2,0)的距离和它到必然直线x=8的距离的比是1∶2,求点P 的轨迹方程.
练习:点P 与必然点F(4,0)的距离和它到必然直线x =1的距离的比是2,求点P 的轨迹方程.
例3:求下列曲线的核心坐标和准线方程:
(1)6222=+y x (2)1242
2=-y x
练习:求下列曲线的核心坐标和准线方程:
(1)6222=-y x (2)12422=+y x
Ⅳ.课时小结:
Ⅴ.课堂检测
Ⅵ.课后作业
书本P 49 习题2
1. 求下列曲线的核心坐标和准线方程:
(1)022=-y x (2)12422-=-y x
2. 求极点在x 轴上,两准线间的距离为
532, e =45的双曲线的标准方程.
3. 求中心到准线的距离为
225,e =5
4的椭圆的标准方程..。
2.5圆锥曲线的共同性质圆锥曲线的共同性质抛物线可以看成平面内到定点(焦点)F的距离与定直线(准线)l的比值等于1(离心率)的动点的轨迹.问题1:当比值大于0小于1时轨迹是什么?提示:椭圆.问题2:当比值大于1时轨迹是什么?提示:双曲线.圆锥曲线的共同定义为:平面内到一个定点F和到一条定直线l(F不在l上)的距离之比等于常数e的点的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.圆锥曲线的准线在圆锥曲线的定义中,定点F是焦点,定直线l是准线,而且知道抛物线只有一个焦点和一条准线.问题:椭圆和双曲线有几个焦点、几条准线?提示:椭圆和双曲线有两个焦点、两条准线.椭圆、双曲线和抛物线的准线方程曲线方程准线方程曲线方程准线方程x 2a 2+y 2b 2= 1(a >b >0) x =±a 2cy 2a 2+x 2b 2=1 (a >b >0) y =±a 2cx 2a 2-y 2b 2=1 (a >0,b >0) x =±a 2cy 2a 2-x 2b 2=1 (a >0,b >0) y =±a 2cy 2=2px (p >0) x =-p 2x 2=2py (p >0) y =-p 2y 2=-2px (p >0)x =p 2x 2=-2py (p >0)y =p 21.关于圆锥曲线共同特征的认识(1)从点的集合(或轨迹)的观点来看:它们都是平面内与一个定点和一条定直线的距离的比是常数e 的点的集合(或轨迹),只是当0<e <1时为椭圆,当e =1时为抛物线,当e >1时为双曲线.(2)从曲线形状的生成过程来看:圆锥曲线可看成不同的平面截圆锥面所得到的截面的周界,因此,椭圆(包括圆)、抛物线、双曲线又统称为圆锥曲线.2.圆锥曲线共同特征的应用设F 为圆锥曲线的焦点,A 为曲线上任意一点,d 为点A 到定直线的距离,由AFd =e 变形可得d =AFe.由这个变形可以实现由AF 到d 的转化,借助d 则可以解决一些最值问题.[对应学生用书P36]利用圆锥曲线的定义求轨迹[例1] 已知动点M (x ,y )到点F (2,0)与到定直线x =8的距离之比为12,求点M 的轨迹.[思路点拨] 该题有两种解法,一种是利用直译法直接代入化简,另一种是用圆锥曲线的统一定义来求.[精解详析] 法一:由题意得(x -2)2+y 2|x -8|=12,整理得x 216+y 212=1.法二:由圆锥曲线的统一定义知,M 点的轨迹是一椭圆.c =2,a 2c =8,则a 2=16,∴a =4,∴e =24=12,与已知条件相符,∴椭圆中心在原点,焦点(±2,0),准线x =±8,b 2=12, 其方程为x 216+y 212=1.[一点通](1)解决此类题目有两种方法:①直接列方程,代入后化简整理即得方程.②根据定义判断轨迹是什么曲线,然后确定其几何性质,从而得出方程.(2)当题目中给出的条件直观上看不符合圆锥曲线定义时,要进行适当的变形,通过推导找出与之相关的距离问题进行验证,通过点与点、点与线间距离的转化去寻找解题途径,对于这种轨迹问题,一般都要通过定义解决.1.平面内的动点P (x ,y )(y >0)到点F (0,2)的距离与到x 轴的距离之差为2,求动点P 的轨迹.解:如图,作PM ⊥x 轴于M ,延长PM 交直线y =-2于N . ∵PF -PM =2.∴PF =PM +2. 又∵PN =PM +2,∴PF =PN .∴P 到定点F 与到定直线y =-2的距离相等.由抛物线的定义知,P 的轨迹是以F 为焦点以y =-2为准线的抛物线,顶点在原点,p =4.∴抛物线方程为x 2=8y .∴动点P 的轨迹是抛物线.2.在平面直角坐标系xOy 中,已知F 1(-4,0),直线l :x =-2,动点M 到F 1的距离是它到定直线l 距离d 的2倍.设动点M 的轨迹曲线为E .(1)求曲线E 的轨迹方程;(2)设点F 2(4,0),若直线m 为曲线E 的任意一条切线,且点F 1,F 2到m 的距离分别为d 1,d 2,试判断d 1d 2是否为常数,并说明理由.解:(1)由题意,设点M (x ,y ), 则有MF 1=(x +4)2+y 2,点M (x ,y )到直线l 的距离d =|x -(-2)|=|x +2|, 故(x +4)2+y 2=2|x +2|,化简得x 2-y 2=8.故动点M 的轨迹方程为x 2-y 2=8. (2)d 1d 2是常数,证明如下:若切线m 斜率不存在,则切线方程为x =±22, 此时d 1d 2=(c +a )·(c -a )=b 2=8.当切线m 斜率存在时,设切线m :y =kx +t , 代入x 2-y 2=8,整理得:x 2-(kx +t )2=8, 即(1-k 2)x 2-2tkx -(t 2+8)=0. Δ=(-2tk )2+4(1-k 2)(t 2+8)=0, 化简得t 2=8k 2-8.又由kx -y +t =0,d 1=|-4k +t |k 2+1,d 2=|4k +t |k 2+1, d 1d 2=|16k 2-t 2|k 2+1=|16k 2-(8k 2-8)|k 2+1=8,8为常数.综上,对任意切线m ,d 1d 2是常数.最值问题[例2] 若点P 的坐标是(-1,-3),F 为椭圆x 216+y 212=1的右焦点,点Q 在椭圆上移动,当QF +12PQ 取得最小值时,求点Q 的坐标,并求出最小值.[思路点拨] 利用定义把QF 转化成到准线的距离,然后再求它与12PQ 的和的最小值.[精解详析] 在x 216+y 212=1中a =4,b =2 3,c =2,∴e =12,椭圆的右准线l :x =8,过点Q 作QQ ′⊥l 于Q ′, 则QFQQ ′=e . ∴QF =12QQ ′.∴QF +12PQ =12QQ ′+12PQ =12(QQ ′+PQ ).要使QQ ′+PQ 最小,由图可知P 、Q 、Q ′三点共线,所以由P 向准线l 作垂线,与椭圆的交点即为QF +12PQ 最小时的点Q ,∴Q 的纵坐标为-3,代入椭圆得:Q 的横坐标为x =2. ∴Q 为(2,-3),此时QF +12PQ =92.[一点通] 利用圆锥曲线的定义通过把到焦点的距离转化为到准线的距离,或把到准线的距离转化为到焦点的距离,从而求得距离问题的最值是这一部分的常见题型,应熟练掌握.3.已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),M 为双曲线的动点,求MA +35MF 的最小值.解:双曲线离心率e =53,由圆锥曲线的共同性质知MFd =e (d 为点M 到右准线l 的距离),右准线l 的方程为x =95,而AM +35MF =MA +35de =MA +d .显然当AM ⊥l 时,AM +d 最小,而AM +d 的最小值为A 到l 的距离为9-95=365.即MA +53MF 的最小值为365.4.已知定点A (-2,3),点F 为椭圆x 216+y 212=1的右焦点,点M 在椭圆上运动,求AM+2MF 的最小值,并求此时点M 的坐标.解:∵a =4,b =23,∴c =a 2-b 2=2.∴离心率e =12.A 点在椭圆内,设M 到右准线距离为d ,则MF d =e ,即MF =ed =12d ,右准线l :x =8.∴AM +2MF =AM +d .∵A 点在椭圆内,∴过A 作AK ⊥l (l 为右准线)于K ,交椭圆于点M 0.则A 、M 、K 三点共线,即M 与M 0重合时,AM +d 最小为AK ,其值为8-(-2)=10. 故AM +2MF 的最小值为10,此时M 点坐标为(23,3).圆锥曲线的准线、离心率的应用[例3] 求椭圆x 216+y 225=1的离心率与准线方程,并求与该椭圆有相同准线,且离心率互为倒数的双曲线方程.[思路点拨] 由方程确定a ,c ,从而求e 与准线,由椭圆的准线、离心率,再确定双曲线的实轴长、虚轴长,从而求出双曲线的方程.[精解详析] 由x 216+y 225=1知a =5,b =4,c =3,e =c a =35,准线方程为y =±253.设双曲线虚半轴长为b ′,实半轴长为a ′,半焦距为c ′,离心率为e ′. 则e ′=1e =53,又∵a 2c =a ′2c ′=253.解得:a ′=1259,c ′=62527,b ′2=250 000729.双曲线方程为81y 215 625-729x 2250 000=1.[一点通] 在圆锥曲线中,a ,b ,c ,e ,p 是确定图形形状的特征量,把握它们之间的内在联系是解决此类问题的关键.5.过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A ,B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为________.解析:设圆锥曲线的离心率为e ,M 为AB 的中点,A ,B 和M 到准线的距离分别为d 1,d 2和d ,圆的半径为R ,d =d 1+d 22,R =AB 2=F A +FB 2=e (d 1+d 2)2.由题意知R >d ,则e >1,故圆锥曲线为双曲线.答案:双曲线6.(天津高考)已知抛物线y 2=8x的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点, 且双曲线的离心率为2,则该双曲线的方程为________.解析:抛物线y 2=8x 的准线x =-2过双曲线的一个焦点,所以c =2,又离心率为2,所以a =1,b =c 2-a 2=3,所以该双曲线的方程为x 2-y 23=1. 答案:x 2-y 23=11.圆锥曲线的准线:在求解圆锥曲线的准线时,应根据曲线的方程先化为其对应的标准形式,通过标准形式确定好曲线的焦点在坐标轴的位置,求出相应的量a 、c 或p ,然后写出其准线.2.圆锥曲线的判断:要判断所给曲线是哪种圆锥曲线,常利用圆锥曲线的定义求解,其思路是: (1)如果遇到有动点到两定点的距离问题应自然联想到椭圆及双曲线的定义.(2)如果遇到动点到一个定点和一条定直线的距离问题,应自然联想到椭圆、双曲线和抛物线的统一定义.[对应课时跟踪训练(十四)]1.若双曲线x 28-y 2b 2=1的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为________.解析:根据题意和已知可得方程组⎩⎪⎨⎪⎧a 2c =2,a 2=8,⇒⎩⎨⎧c =4,a =2 2,⇒e = 2.答案:22.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则cos ∠F 1PF 2的值是________.解析:曲线C 1:x 26+y 22=1与曲线C 2:x 23-y 2=1的焦点重合,两曲线共有四个交点,不妨设P 为第一象限的交点.则PF 1+PF 2=26,PF 1-PF 2=23,解得PF 1=6+3,PF 2=6- 3.又F 1F 2=4,在△F 1PF 2中,由余弦定理可求得cos ∠F 1PF 2=(6+3)2+(6-3)2-422×(6+3)×(6-3)=13.答案:133.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则PM +PN 的最小值、最大值分别为________________.解析:PM +PN 最大值为PF 1+1+PF 2+1=12,最小值为PF 1-1+PF 2-1=8. 答案:8,124.(福建高考)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y=3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,MF 1=c ,MF 2=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.答案:3-15.已知椭圆x 24+y 22=1内部的一点为A ⎝⎛⎭⎫1,13,F 为右焦点,M 为椭圆上一动点,则MA+2MF 的最小值为________.解析:设M 到右准线的距离为d , 由圆锥曲线定义知MF d =22,∴d =2MF .∴MA +2MF =MA +d .由A 向右准线作垂线,垂线段长即为MA +d 的最小值. MA +d ≥2 2-1. 答案:2 2-16.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,求此双曲线离心率e 的最大值.解:设P 点坐标为P (x 0,y 0),由圆锥曲线的统一定义得:e =PF 1x 0+a 2c =PF 2x 0-a 2c ,把PF 1=4PF 2.代入则有:x 0+a 2c =4⎝⎛⎭⎫x 0-a 2c .整理得5a 2c =3x 0≥3a (∵x 0≥a ).∴e =c a ≤53.∴离心率e 的最大值为53.7.已知平面内的动点P 到定直线l :x =2 2的距离与点P 到定点F (2,0)之比为 2. (1)求动点P 的轨迹C 的方程;(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB ,交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为k 1、k 2,问k 1·k 2是否为定值?解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -2 2|=22.整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1. (2)由题意,设N (x 1,y 1),A (x 2,y 2),则B (-x 2,-y 2),x 214+y 212=1,x 224+y 222=1.k 1·k 2=y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=y 21-y 22x 21-x 22=2-12x 21-2+12x 22x 21-x 22=-12,为定值. 8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右准线l 2与一条渐近线l 交于点P ,F 是双曲线的右焦点.(1)求证:PF ⊥l ;(2)若PF =3,且双曲线的离心率e =54,求该双曲线的方程.解:(1)证明:右准线为l 2:x =a 2c ,由对称性不妨设渐近线l 为y =b a x ,则P ⎝⎛⎭⎫a 2c ,ab c ,又F (c,0),∴k PF =abc -0a 2c-c =-ab .又∵k l =b a ,∴k PF ·k l =-a b·ba =-1.∴PF ⊥l .(2)∵PF 的长即F (c,0)到l :bx -ay =0的距离, ∴|bc |a 2+b 2=3,∴b =3.又e =c a =54,∴a 2+b 2a 2=2516.∴a =4.故双曲线方程为x 216-y 29=1.[对应学生用书P38]一、圆锥曲线的意义 1.椭圆平面内与两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆. (1)焦点:两个定点F 1,F 2叫做椭圆的焦点. (2)焦距:两焦点间的距离叫做椭圆的焦距. 2.双曲线平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线.(1)焦点:两个定点F 1,F 2叫做双曲线的焦点.(2)焦距:两焦点间的距离叫做双曲线的焦距.3.抛物线平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.二、圆锥曲线的标准方程及几何性质1.椭圆的标准方程和几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b-a≤y≤a,-b≤x≤b 顶点(±a,0),(0,±b)(0,±a),(±b,0)轴长短轴长=2b,长轴长=2a焦点(±c,0)(0,±c)焦距F1F2=2c对称性对称轴x轴,y轴,对称中心(0,0)离心率0<e<12.双曲线的标准方程和几何性质焦点的位置焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点(±c,0)(0,±c)焦距2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R顶点 (±a,0) (0,±a )对称性 关于x 轴、y 轴、坐标原点对称 轴长 实轴长=2a ,虚轴长=2b 渐近线方程 y =±b axy =±a bx离心率 e =c a>13. 抛物线的标准方程和几何性质 类型y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形焦点 (p2,0) (-p2,0) (0,p 2)(0,-p 2)准线 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Rx ∈R ,y ≥0x ∈R ,y ≤0对称轴 x 轴y 轴 顶点 (0,0) 离心率 e =1开口方向向右向左向上向下三、圆锥曲线(椭圆、双曲线、抛物线)的共同性质1.圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e .这个常数e 叫值圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线.2.椭圆的离心率满足0<e <1,双曲线的离心率e >1,抛物线的离心率e =1.⎣⎢⎡⎦⎥⎤对应阶段质量检测(二) 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.(江苏高考)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:令x 216-y 29=0,解得y =±34x .答案:y =±34x2.(四川高考改编)抛物线y 2=4x的焦点到双曲线x 2-y 23=1的渐近线的距离是________. 解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为|±3×1-0|1+3=32. 答案:323.(辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题意因为PQ 过双曲线的右焦点(5,0),所以P ,Q 都在双曲线的右支上,则有FP -P A =6,FQ -QA =6,两式相加,利用双曲线的定义得FP +FQ =28,所以△PQF 的周长为FP +FQ +PQ =44.答案:444.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析:设P (x ,y ),动圆P 在直线x =1的左侧,其半径等于1-x ,则PC =1-x +1,即(x +2)2+y 2=2-x . ∴y 2=-8x . 答案:y 2=-8x5.两个焦点为(±2,0)且过点P ⎝⎛⎭⎫52,-32的椭圆的标准方程为________. 解析:∵两个焦点为(±2,0), ∴椭圆的焦点在x 轴上,且c =2. 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∴⎩⎨⎧⎝⎛⎭⎫522a 2+⎝⎛⎭⎫-322b 2=1a 2-b 2=4,,解得a 2=10,b 2=6.∴椭圆的标准方程为x 210+y 26=1.答案:x 210+y 26=16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,AF =2,则BF =________.解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有,焦点F (1,0),AF =x 1+1=2,x 1=1,直线AF 的方程是x =1,故BF =AF =2.答案:27.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.解析:在△ABF 中,AF 2=AB 2+BF 2-2AB ·BF ·cos ∠ABF =102+82-2×10×8×45=36,则AF =6.由AB 2=AF 2+BF 2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =OF =AB2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以BF =AF 1=8.由椭圆的性质可知AF +AF 1=14=2a ⇒a =7,则e =c a =57.答案:578.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是________.解析:设P (x ,y )为抛物线上任意一点,则P 到直线的距离d =|2x -y -4|5=|2x -x 2-4|5=|(x -1)2+3|5, ∴当x =1时,d 取最小值35,此时P 的坐标为(1,1). 答案:(1,1)9.设点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与圆x 2+y 2=2a 2的一个交点,F 1,F 2分别是双曲线的左、右焦点,且PF 1=3PF 2,则双曲线的离心率为________.解析:由⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1=3PF 2得PF 1=3a ,PF 2=a ,设∠F 1OP =α,则∠POF 2=180°-α,在△PF 1O 中,PF 21=OF 21+OP 2-2OF 1·OP ·cos α ①, 在△OPF 2中,PF 22=OF 22+OP 2-2OF 2·OP ·cos(180°-α) ②,由cos(180°-α)=-cos α与OP =2a , ①+②得c 2=3a 2,∴e =c a =3a a = 3.答案:310.已知双曲C 1=x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐进线的距离为2,则抛物线C 2的方程为______________________.解析:∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的率心率为2.∴ca =a 2+b 2a =2,∴b =3a .∴双曲线的渐近线方程为 3 x ±y =0.∴抛物线C 2:x 2=2py (p >0)的焦点⎝⎛⎭⎫0,p2到双曲线的渐近线的距离为⎪⎪⎪⎪3×0±p 22=2.∴p =8.∴所求的抛物线方程为x 2=16y . 答案:x 2=16y11.(新课标全国卷Ⅰ改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3.所以E 的方程为x 218+y 29=1.答案:x 218+y 29=112.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则PF 1·PF 2的值是________.解析:取P 在双曲线的右支上,则⎩⎨⎧ PF 1+PF 2=2 m ,PF 1-PF 2=2 a ,∴⎩⎨⎧PF 1=m +a ,PF 2=m -a .∴PF 1·PF 2=(m +a )(m -a )=m -a . 答案:m -a13.若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 的中点的连线斜率为22,则nm的值为________. 解析:设A (x 1,y 1),B (x 2,y 2),AB 中点(x 0,y 0).由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x ,得(m +n )x 2-2nx +n -1=0 ∴x 1+x 2=2n m +n ,∴x 0=n m +n .∴y 0=m m +n .又y 0x 0=22,∴m n =22,∴nm = 2. 答案:214.(四川高考改编)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝⎛⎭⎫-c ,b2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:22二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知双曲线与椭圆x 236+y 249=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为37,求双曲线的方程.解:在椭圆x 236+y 249=1中,焦点坐标为(0,±13),离心率e ′=137, 设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=13,137∶a 2+b 2a =37,解得⎩⎪⎨⎪⎧a 2=9,b 2=4. ∴双曲线的方程为y 29-x 24=1.16.(本小题满分14分)已知中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为32,且与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆的方程.解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵e =32,∴a 2=4b 2,即a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.把直线方程代入并化简,得5x 2-8x +4-4b 2=0. 设M (x 1,y 1)、N (x 2,y 2),则 x 1+x 2=85,x 1x 2=15(4-4b 2).∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=15(1-4b 2).由于OM ⊥ON ,∴x 1x 2+y 1y 2=0. 解得b 2=58,a 2=52.∴椭圆方程为25x 2+85y 2=1.17.(本小题满分14分)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程为y =-3(x -c ).代入椭圆方程3x 2+4y 2=12c 2,得B ⎝⎛⎭⎫85c ,-335c .所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设AB =t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t . 由余弦定理得(3a -t )2=a 2+t 2-2at cos 60°可得, t =85a . 由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.18.(本小题满分16分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与C 相交于A ,B 两点,若|AB |=8,求直线l 的方程.解:抛物线y 2=4x 的焦点为F (1,0),当直线l 斜率不存在时,|AB |=4,不合题意.设直线l 的方程为y =k (x -1),代入y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由题意知k ≠0, 则x 1+x 2=2k 2+4k 2.由抛物线定义知,|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2, ∴x 1+x 2+2=8,即2k 2+4k 2+2=8.解得k =±1.所以直线l 的方程为y =±(x -1), 即x -y -1=0,x +y -1=0.19.(本小题满分16分)(陕西高考)已知动点M (x ,y )到直线l :x =4的距离是它到点N (1,0)的距离的2倍.(1)求动点M 的轨迹C 的方程;(2)过点P (0,3)的直线m 与轨迹C 交于A ,B 两点,若A 是PB 的中点,求直线m 的斜率. 解:(1)设M 到直线l 的距离为d ,根据题意d =2|MN |.由此得|4-x |=2(x -1)2+y 2,化简得x 24+y 23=1,所以,动点M 的轨迹方程为x 24+y 23=1.(2)法一:由题意,设直线m 的方程为y =kx +3, A (x 1,y 1),B (x 2,y 2). 将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中Δ=(24k )2-4×24(3+4k 2)=96(2k 2-3)>0, 故k 2>32.由根与系数的关系得, x 1+x 2=-24k3+4k 2,①x 1x 2=243+4k 2.② 又因为A 是PB 的中点,故x 2=2x 1,③ 将③代入①,②,得 x 1=-8k 3+4k 2,x 21=123+4k 2, 可得⎝⎛⎭⎫-8k 3+4k 22=123+4k 2,且k 2>32, 解得k =-32或k =32,所以直线m 的斜率为-32或32.法二:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2). ∵A 是PB 的中点, ∴x 1=x 22,①y 1=3+y 22.②又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧ x 2=2,y 2=0,或⎩⎪⎨⎪⎧x 2=-2,y 2=0.即点B 的坐标为(2,0)或(-2,0),所以直线m 的斜率为-32或32.20.(本小题满分16分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积. 解:(1)设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|, 故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故 S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2, 由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意,直线PQ 的倾斜角不为0, 故可设直线PQ 的方程为x =my -2,代入椭圆方程得 (m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是方程(*)的两根, 因此y 1+y 2=4mm 2+5,y 1·y 2=-16m 2+5.又2B P =(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知2B P ·2B Q =0, 即16m 2-64=0,解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0. 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8109,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16109.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16109.综上所述,△PB 2Q 的面积为16109.。
圆锥曲线的共同性质教学案课题 圆锥曲线的共同性质(1)同学完成所需时间 20分钟班级 姓名 第 小组 一、[学习目标]1.了解圆锥曲线的统肯定义;2.把握依据标准方程求圆锥曲线的准线方程的方法二、[重点难点]教学重点:圆锥曲线的统肯定义。
教学难点:圆锥曲线的统肯定义。
三、教学过程:1、创设情境我们知道,平面内到一个定点F 的距离和到一条定直线L (F 不在L 上) 的距离的比等于1的动点P 的轨迹是抛物线。
如图即1 PAPF时,点P 的轨迹 是抛物线。
下面思考这样个问题:当这个比值是一个不等于1的常数时,我们来观看动点P 的轨迹又是什么曲线呢?动点P 的轨迹怎么变化?2、师生探究下面我们来探讨这样个问题:例1 已知点P (x,y )到定点F (c,0)的距离与它到定直线l :x =2a c 的距离的比是常数c a(a >c >0),求点P 的轨迹。
结论:点P 的轨迹是焦点为(-c ,0),(c ,0),长轴、短轴分别为2a ,2b 的椭圆。
这个椭圆的离心率e 就是P 到定点F 的距离和它到定直线l (F 不在l 上)的距离的比。
变式:假如我们在例1中,将条件(a >c >0)改为(c >a >0),点P的轨迹又发生如何变化呢?(双曲线的类似命题由同学思考,发觉,从而引导同学建立圆锥曲线的统肯定义)2、建构数学下面,我们对上面三种状况总结归纳出圆锥曲线的一种统肯定义.(老师引导同学共同来发觉规律) 结论:圆锥曲线统肯定义:平面内到一个定点F和到一条定直线L (F 不在L 上)的距离的比等于常数e 的点的轨迹.当0<e <1时,它表示椭圆;当e >1时,它表示双曲线;当e =1时,它表示抛物线.(其中e 是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线是圆锥曲线的准线)下面,我们对圆锥曲线的准线作一下探讨:(利用图形的对称性解决)对于上述问题中的椭圆或双曲线,我们发觉其中心在原点,焦点在x 轴上,那么我们可得到与之相对应的准线方程:如:焦点F(-c,0)与准线x =-2a c 对应,焦点F(c,0)与准线x =2a c对应.思考一:想一想,焦点在x 轴的抛物线的准线方程又如何?思考二:对于焦点在y 轴上的椭圆,双曲线,抛物线(标准形式)的准线方程又如何呢?四、数学运用 1、课堂练习:求下列曲线的准线方程(1)1352222=+y x (2)16422=+y x (3)32822=-y x (4)422-=-y x (5)x y 162= (6)y x 32-=五、达标检测1、如图,点O是椭圆中心,F 为焦点,A 为顶点,准线l 交x 轴于Q P B ,,在椭圆上且l PD ⊥ 于,AO QF ⊥于F,关于曲线的离心率有如下数值: ⑴PDPF ,⑵BFQF ,⑶BOAO ,⑷BAAF , ⑸AOFO其中正确的个数是 ( )(A )2 (B )3 (C )4 (D )52、假如双曲线191622=-y x 右支上一点P 到它的右焦点的距离等于2,则P 到左准线的距离为( )(A )524 (B )1069 (C )8 (D )103、设点P 是双曲线1322=-y x 上一点,焦点)0,2(F 点)2,3(A ,使||21||PF PA +有最小值时,则点P 的坐标是( )(A ))2,321((B ))2,321(- (C ))62,3( (D ))62,3(- 4、过椭圆左焦点F ,倾斜角为60°的直线交椭圆于A 、B 两点,若|FA |=2|FB |,则椭圆的离心率为( ) (A)32 (B)32 (C)21 (D)225、方程|2|)1(3)1(322-+=+++y x y x 表示的曲线是( ) (A)椭圆 (B)双曲线 (C)抛物线 (D)不能确定6、求到点A (1,1)和到直线x+2y=3距离相等的点的轨迹。
课题:圆锥曲线单元复习---------解析几何中的定点与定值问题教材:苏教版《数学》(选修1-1)授课人:仪征市第二中学 俞仁宗一、教学习目标:1知识与技能:(1) 通过设点处理强化坐标运算,合理水消元手段;(2)熟悉定点问题的常见算处理方法,2过程与方法:掌握解决恒成立等问题的基本方法,培养学生的合理运算能力;3情感态度与价值观:深刻体会方程思想、转化思想的运用及强化学生对解题流程的分析及把控能力。
二、教学重点与难点:重点:定点与定值问题的常见方法;难点:合理消元手段、运算能力的培养。
三、教学方法与手段 :采用引导—发现式 , 合作--讨论式教学方法,配合多媒体、投影等辅助教学。
四教学过程问题1:在平面直角坐标系o 中,已知椭圆T 的方程为x22+y 2=1,设A,B,M 是椭圆T 上的三点(异于椭圆顶点),且存在锐角θ,使OM⃗⃗⃗⃗⃗⃗ =cos θOA ⃗⃗⃗⃗⃗ sin θOB ⃗⃗⃗⃗⃗ 1求证:直线OA 与OB 的斜率之积为定值;2求OA 2OB 2的值。
1、学生合作交流;2、小组代表发言;3、学生总结。
小结:题型一、设点坐标强化坐标运算、整体运算、消元思想1、设曲线上的动点坐标,利用动点在曲线上进行坐标运算、以及整体运算、和消元思想。
变式训练:1、设M为双曲线x2a2−y2b2=1a>0,b>0上的任意一点,则点M到双曲线的两条渐近线的距离之积为____________2、已知x212y24k1,k2k1∙k2X28y240,2是椭圆的一个顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,求直线AB恒过定点的坐标。
1、学生合作交流;2、小组代表发言;3、学生总结。
小结:题型二、特值法(再证明)、设动直线方程、解动点坐标等方法处理定点问题2、通过设动直线方程再利用条件,寻找动直线中的字母关系(与b);或者解出动点坐标,再求出动直线方程,通过化简求出定点;或者利用两个特殊位置先求出定点,再证明变式训练:在平面直角坐标系o中,椭圆C;x 218y29=1,过点M(0,−1)的动直线l与椭圆C交于A,B两点,试判断以AB为直径的圆是否恒过定点,说明理由。
第二章 圆锥曲线与方程第14课时 圆锥曲线的共同性质教学目标:1.了解圆锥曲线的统一定义;2.掌握根据标准方程求圆锥曲线的准线方程的方法.教学重点:圆锥曲线的统一定义教学难点:圆锥曲线的准线方程教学过程:Ⅰ.问题情境Ⅱ.建构数学圆锥曲线的统一定义:Ⅲ.数学应用例1:点M 与一定点F(c ,0)的距离和它到一定直线x =c a 2(0>>c a )的距离的比是ac ,求点M 的轨迹方程,并说明轨迹是什么图形.练习:点M 与一定点F(c ,0)的距离和它到一定直线x =c a 2(0>>a c )的距离的比是ac ,求点M 的轨迹方程,并说明轨迹是什么图形.例2:点P 与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P 的轨迹方程.练习:点P 与一定点F(4,0)的距离和它到一定直线x =1的距离的比是2,求点P 的轨迹方程.例3:求下列曲线的焦点坐标和准线方程:(1)6222=+y x (2)12422=-y x练习:求下列曲线的焦点坐标和准线方程:(1)6222=-y x(2)12422=+y xⅣ.课时小结:Ⅴ.课堂检测Ⅵ.课后作业书本P 49 习题21. 求下列曲线的焦点坐标和准线方程:(1)022=-y x (2)12422-=-y x2. 求顶点在x 轴上,两准线间的距离为532, e =45的双曲线的标准方程. 3. 求中心到准线的距离为225,e =54的椭圆的标准方程.. 第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
)3、书写教学“杏花春雨江南”6个字。
杏:上大下小,上面要写得大,大在哪里?(大在撇捺)写的时候撇捺要舒展,象燕子张开的翅膀;下面的“口”要写得小,左右两竖要内斜,稍扁;“木”的竖写在竖中线上。
花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。
春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。
雨:旁边两竖要内斜,上横短,中竖写在竖中线上;从下面看,哪一笔最低?钩最低,中竖最短;四个点都是斜点。
江:左右结构,左窄右宽左边三点水第二点略向外展;右边“工”字上横是短横,下横是长横;中竖略斜。
南:上横短;下边两竖内斜;框架中两横都是短的,中间一竖悬针;三个竖画左、中差不多长,右竖钩最低;横折钩要写出弯势。
4、学生练习,教师巡回指导。
三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。
板书设计:书写练习1、杏花春雨江南我的思考:进一步加强写字姿势训练,这是根本。
在了解字结构的基础上更好的把握每个字的书写。
及时对书写情况进行反馈,同时通过奖励激发学生兴趣。
课后反思:通过字形的比较,学生基本上学会了笔画位置的比较,但是还需要不断的引导。
第(3)课时课题:书写练习2课型:新授课教学目标:1、掌握车字旁写法,并能把“轻”字写端正。
2、完成书写练习。
重点:正确地书写“轻”字难点:“车”字旁的书写。
教学过程:一、讲评上一课作业情况。
1、表扬书写优秀者,展示其作业。
2、指出存在的主要缺点并进行针对性的练习。
二、指导“车”字旁写法:1、出示范字,观察“车”字旁写法。
2、讨论明确其书写要领:“车”字旁分四笔完成,整个偏旁左重右轻,不超过竖中线。
第一笔横稍短。
第二笔撇折收笔于横中线。
第三笔垂露竖,应在第一笔横下的正中位置起笔。
最后一笔,比第一横长一些,离折笔稍近一些。
3、练写“车”字旁。
三、指导临写“轻”字。
1、观察范字。
2、明确写法。
“轻”字的写法:“轻”字左窄右宽,右边的第一笔起笔与左边的第一笔短横相齐平,底部大体相齐,右边上下两部分基本相等。
四、课后延伸书写:斩、转板书设计:书写练习2、轻、斩、转我的思考:以复习巩固导入,并有针对地进行纠正。
明确字的重心及每个笔画在田字格中分布的位置,使学生初步掌握字的结构特点。
在练习书写“车”字旁的基础上,更好的把握整个字的字形。
课后及时巩固,拓展。
课后反思:学生基本上能把握好字在田字格中的位置,处理好左右的布局。
第(4)课时课题:结构特点(六)课型:新授课教学目标: 1、懂得以宝盖头、穴字头等作为字头的字宜上大而下小。
2、通过练习,写好课文中的例字。
重点:掌握以宝盖头、穴字头等作为字头的字宜上大而下小难点:把握好字的结构。
教学过程:一、复习巩固二、教学新课1.讲解以宝盖头、穴字头等作为字头的字(1)教师讲解字头的书写。
(2)学生练习书写,教师指导书写。
(3教师根据实际情况小结,提出要求。
2.指导书写例字(1)出示例字:“宝”:首先要控制好字头,摆正位置,下面的“玉”字占格子的一半以上,特别是最后一横宜稍长,使整个字立正。
“穷”:下面的力字宜正,不宜写得太小。
(其余字略)(2)学生练习,师巡回指导。
3、提出注意点三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。
板书设计:结构特点(6)宝、穷、写、会、奔我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。
激励学生更好的书写。
第(5)课时课题:怎样写好字课型:复习课教学目标:1、让学生能够正确认识,端正态度。
教学过程:一、正确的学书之路1.临帖临帖是学习书法的最根本的方法。
古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。
只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。
2.专一学书首先应师承一家,建立根据地,然后再发展。
这就有一个选帖的问题,选帖的标准:①好帖;②喜欢。
选定帖后专心致志,认真临习,坚持不懈,直至形同神似。
这个时期检验你学习得怎样,首先看临得像不像,再看笔法笔意。
3.博采众长当对一本帖或一家书体临习达到形同神似之后,就要广涉其他好帖,取其营养加以吸收消化,融会贯通。
4.字外功夫练字的同时经常要多读书,多掌握方方面面的知识,加强自身修养。
总之一句话,加强字外功夫的训练。
在此基础上,逐步形成自己的风格,便自成一家。
综上所述,我们可以把正确的学书之路概括为:二、科学的学书方法明确了正确的学书之路之后,我们还要掌握科学的学习方法,有了科学的学习方法,就可得到较好的学习效果。
1.临帖和摹帖这既是正确学书之路的开端,又是正确学书方法中的根本点,必须坚信不疑,坚定不移。
摹帖和临帖各有优点,效果各异。
姜夔《续书谱》中说:“临书易失占人位置,而多得古人笔意,摹书易得古人位置,而多失古人笔意,临书易进,摹书易忘。
”其中的“笔意”即指笔法、笔势及线条意趣。
“临”的方法就是看着字帖,照着写。
只要仔细地临,便容易掌握笔法笔意.从而把范本的精髓学到手。
“摹”的方法,就是用薄纸蒙在帖上,直接地描画。
所以字形基本上不会走样,多摹几遍,有利于把握结构。
但摹书看不清笔法,“易失笔意”,虽然间架不错.但没有笔法,字就僵化。
所以,初学者可以临摹并用,相互补充。
2.每天定量事实证明,任何事情都有一个由量变到质变的过程,练字也一样,写得太少,练习量跟不上,就谈不上进步;当然盲目机械地多写,疲倦了效果也不好。
一定的量才能达到的一定的效果,较佳的量才能达到较佳的效果。
3.循序渐进学习书法,在勤学苦练的基础上,还应该懂得它是一个循序渐进的过程:第一,先正楷,后行草。
苏轼说:“真生行,行生草。
真如立,行如行,草如走。
”就是说楷、行、草书三者如同人的立、走、跑,如果人连站都不能站,怎么能走和跑呢?如果没有楷书基础,直接写行书、草书,就会疏于法度,流于轻滑飘浮。
行书、草书是楷书的流、便、疏、散,学好楷书之后,加强用笔的流动呼应,行草就容易上手。
等到楷法熟练,再写行草时.便可悟到两者相通之处,可相辅相成,互相促进,相得益彰。
第三,先点画,后结构,再章法。
书法是线条的艺术,也就是以基本点画为基础的艺术。
基本点画不好,整字或整篇的艺术性就无从谈起。
由于钢笔尖性硬,在线条变化上相对简单得多,故钢笔书法学习在结构上花的时间多,而在用笔、点画上相对较少。
但这并不是说点画用笔不重要,相反,它是钢笔书法的基本功,只有在点画书写的基本功扎实之后,才可能去把握结构。
在结构上有了一定的基础后,整幅字的章法就容易把握了。
第(6)课时课题:结构特点(七)课型:新授课教学目标:1、了解“皿”、“土”等做字底的字的结构特点,学习这类字的写法。
2、通过练习,写好课文中的例字。
重点:掌握字的结构,学习写法。
教学过程:一、观察例字,进行讨论:(1)这些字是什么结构?(2)它们分别是什么字底?(3)书写上有什么特点?二、教师示范小结三、指导要点盘:上半部分宜瘦长,下面要宽扁。