九年级数学下册-第27章-相似复习课教案-(新版)新人教版
- 格式:doc
- 大小:117.00 KB
- 文档页数:1
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。
2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。
本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。
3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。
本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。
要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。
通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。
4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。
(3)了解两个三角形相似的概念,探索两个三角形相似的条件。
(4)了解图形的位似,能够利用位似将一个图形放大或缩小。
(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。
(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。
4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
《相似三角形》复习课教案知识与技能:1.掌握平行线分线段成比例定理及推论,会用平行线判定三角形相似.2.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.3.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.4.了解图形的位似,能够利用位似将一个图形放大或缩小.5.会利用图形的相似解决一些简单实际问题.过程与方法:1.结合相似图形性质和判定方法的探索和证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的能力.2.进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力.3.通过坐标系下位似图形的画法,进一步体会数形结合思想在数学中的应用.4.通过探究相似三角形在实际问题中的应用,体会建模思想,提高分析问题、解决问题的能力,培养数学应用意识.情感态度价值观:1.通过建立与三角形相似有关的数学模型解决实际问题,培养学生数学建模思想,提高学生运用数学知识解决实际问题的能力.2.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.3.在类比、猜想、证明的探索过程中,让学生体验成功的快乐,同时培养学生严谨的求学精神.4.通过建立数学模型解决实际问题,培养学生积极进取的精神,增强学习数学的自信心.【重点】1.理解并掌握相似三角形的判定和性质,并能应用相似三角形的判定定理和性质进行有关计算.2.能够利用位似将一个图形放大或缩小.3.会利用图形的相似解决一些简单实际问题.【难点】1.相似三角形的判定和性质的综合运用.2.建立数学模型,利用相似三角形解决实际问题.教学过程:一、知识总结:1、相似图形形状相同的图形叫做相似图形.两个图形相似,其中一个图形可以看成是由另一个图形放大或缩小得到的.当两个图形的形状相同,大小也相同时,这两个图形也是相似图形,它们是特殊的相似图形:全等图形.2、成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a b =c d(即ad =bc ),我们就说这四条线段成比例,或者说这四条线段是成比例线段,简称比例线段.3、相似多边形的概念与性质两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形,相似多边形的对应边的比叫做相似比.相似多边形的性质:相似多边形的对应角相等,对应边成比例. 4、相似三角形的定义若两个三角形的三个角分别相等,三条边成比例,则这两个三角形相似.相似三角形的定义是由相似多边形的定义迁移得到的. 相似三角形的表示:如果△ABC 与△A'B'C'相似,就记作△ABC ∽△A'B'C',符号“∽”读作“相似于”,利用“∽”表示两个图形相似时,对应顶点要写在对应的位置上,主要目的是为了指明对应角、对应边.两个三角形相似,对应边的比叫做相似比,相似比是有顺序的,若△ABC 与△A'B'C'的相似比为k ,则△A'B'C'与△ABC 的相似比为1k. 5、平行线分线段成比例的基本事实两条直线被一组平行线所截,所得的对应线段成比例.把这个基本事实应用到三角形中,可以得到:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 6、相似三角形的判定1.利用平行线判定三角形相似: 平行于三角形一边的直线截其他两边(或两边的延长线),所构成的三角形与原三角形相似. 符合这一特征的图形有两种:“A ”型和“X ”型.2.判定定理1:三边成比例的两个三角形相似.3.判定定理2:两边成比例且夹角相等的两个三角形相似.4.判定定理3:两角分别相等的两个三角形相似.5.直角三角形相似的判定:斜边和直角边对应成比例的两个直角三角形相似. 7、相似三角形的性质1.相似三角形的对应边成比例、对应角相等.2.相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比.3.相似三角形的周长比等于相似比.4.相似三角形的面积比等于相似比的平方. 8、应用相似三角形解决实际问题相似三角形的知识在实际生产和生活中有着广泛的应用,这一应用建立在数学建模思想和数形结合思想的基础上,把实际问题转化为数学问题,通过求解数学问题达到解决实际问题的目的. 9、位似图形1.定义: 两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫做位似中心.2.作位似图形的一般步骤:(1)确定位似中心,画位似图形时,位似中心可能在图形的内部,也可能在图形的外部,还可能在图形的边上.(2)找出关键点(多边形常取顶点):根据相似比,确定能代表所作的位似图形的关键点. (3)顺次连接所得的关键点,得到新的图形. (4)写出作图的结论.3.位似图形的坐标变化规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k ,那么原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(-kx ,-ky ). 二、典型例题:1.如图所示,当满足下列条件之一时,都可判定 △ADC ∽△ACB .(1) ; (2) ;(3)2、 △ABC 的三边长分别为 5,12,13,与它相似的 △DEF 的最小边长为 15,则 △DEF 的其他两条 边长为 .3、如图,△ABC 中,AB=9,AC=6,点 E 在 AB 上 且 AE=3,点 F 在 AC 上,连接 EF ,若 △AEF 与 △ABC 相似,则 AF = .4. 如图,在 □ABCD 中,点 E 在边 BC 上,BE : EC =1 : 2,连接 AE 交 BD 于点 F ,则 △BFE 的面积与 △DFA 的面积之比为ADE C BBCAE5. 如图,CD 是 ⊙O 的弦,AB 是直径,CD⊥AB,垂 足为 P ,求证:PC2 = PA · PB.应用:例1 如图,△ABC 是一块锐角三角形材料,边 BC =120 mm ,高 AD =80 mm ,要把它加工成正方形零件,使正方形的一边在 BC 上,其余两个顶点分别在 AB 、AC 上,这个正方形零件的边长是多少?例2 如图,△ABC 是等边三角形,CE 是外角平分线,点 D 在 AC 上,连接 BD 并延长与 CE 交于点 E.·ACDOP DMEGHABCFA(1) 求证:△ABD ∽△CED;(2) 若 AB = 6,AD = 2CD ,求 BE 的长例3 已知:在 △ABC 中,以 AC 边为直径的 ⊙O 交BC 于点 D ,在劣弧上取一点 E 使 ∠EBC =∠DEC,延长 BE 依次交 AC 于点 G ,交 ⊙O 于 H . (1) 求证:AC⊥BH;例1 如图,某一时刻一根 2 m 长的竹竿 EF 的影长 GE 为 1.2 m ,此时,小红测得一棵被风吹斜的柏树与地面成 30°角,树顶端 B 在地面上的影子点 D与 B 到垂直地面的落点 C 的距离是 3.6 m ,求树 AB 的长.ABCD GE OH2m1.23.6三、课题小结:四、作业布置:练习题小试卷五、板书设计:1、知识点2、专题1:相似三角形的概念、判定、性质3、专题2、应用4、位似。
27章相似
第 ____ 教案_____年_____月_____日星期_____ 教学过程设计
课题27章相似(复习课)备课人知识与目标
方法与策略
学生活动教师活动(师生互动)个性化设计
课型新授课教法“2+2”师友互助审核人
目标C:同步测试独立思考后师友交
流,四人小组讨论,
小组展示讲解。
1.教师按小组指导。
2.提问学生讨论结果。
3.核对答案,讲解易错
点。
教学目标
知识
与技能
1.掌握三角形相似的判定与性质。
2.能够应用相似三角形的判定与性质进行推理及计算。
过程
与方法
培养学生运用几何知识进行推理及计算的能力。
情感态度
与价值观
通过问题情境和探索活动的创设,激发学生的学习兴趣。
重点掌握三角形相似的判定与性质。
课堂小结1.回顾本节课知识
点;
2.回顾解题方法和
易错点。
总结本节课的知识点和
需要注意的地方。
难点
能够应用相似三角形的判定与性质进行推理及计算。
教学过程设计
板
书
设
计
27章相似三角形(复习课)
相似三角形的性质:
①相似三角形的三边,三角 .
②相似三角形的,与都等于相似比.
③相似三角形周长之比等于,相似三角形面积之比等于
2.相似三角形的判定方法:
判定方法① ; 判定方法② ;
判定方法③ ; 判定方法④ ;
知识与目标
方法与策略
学生活动教师活动(师生互动)个性化设计
目标A:掌握三角形相似的判定与性质1.完成题组A的1、
2、3题。
2.师友纠错,展示
1.对学生的回答进行归
纳和补充。
2.对3题适度拓展补充。
目标B:应用相似三角形的判定与性质进行推理及计算
1.独立完成
2.师友交流
3、展示讲解
1.环视学生对小组进行
辅导;
2.教师点评引导,归纳
总结常规思路、解题方
法、步骤及易错点。
集
体
意
见
课
后
反
思
老师给学生一个机会,学生就会给老师一个惊喜;老师给学生一个引导,学生就会走得更远。