人教版九年级数学下册《相似三角形》复习题及答案
- 格式:doc
- 大小:109.08 KB
- 文档页数:5
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
九年级数学《相似三角形》提优训练题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC 于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC 的周长为()2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()3.(2013•孝感)如图,在△ABC 中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()7.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________ .(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP 的平分线交CE于Q,当CQ=CE 时,EP+BP= _________ .14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________ .15.(2012•自贡)正方形ABCD 的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________ cm时,四边形ABCN的面积最大,最大面积为_________ cm2.16.(2012•宜宾)如图,在⊙O 中,AB是直径,点D是⊙O上一点,点C 是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________ (写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC 的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有_________ 条;(2)如图②,∠C=90°,∠B=30°,当= _________ 时,P(l x)截得的三角形面积为△ABC 面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________ .19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n 分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n= _________ .(用含n的式子表示)20.(2013•荆州)如图,△ABC 是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB 上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________ .三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE 交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC 内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O 是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC 的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.参考答案与试题解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC 于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC 的周长为(),∴AG=2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()3.(2013•孝感)如图,在△ABC 中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()===,=,CD=CE=,EF=4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()BF=BC=a =a=5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BA D,AC交BD于点E,CE=4,CD=6,则AE的长为()==6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB 于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG 交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE 于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()∴∠DGA=∠CGN=45°=8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()=DB:9.(2013•德阳)如图,在⊙O 上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O 半径为,tan∠ABC=,则CQ的最大值是()tan∠ABC==,CQ=•PC=PCtan∠ABC= ==∴CQ=•PC= CQ=×5=.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O 于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;。
人教版九年级下册27.2相似三角形解答题专项1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=cm,CP=cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.相似三角形专项练习参考答案与试题解析一.解答题(共20小题)1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴,∴BD2=BA•BE;(2)∵AB=6,BE=8,BD2=BA•BE,∴BD=4,∴DE===4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴,∴,∴EC=4,CD=4.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.【解答】解:(1)证明:①∵在正方形ABCD中,E是AD边的中点,∴在Rt△EBA中,AB=2AE,∵AP⊥BE于点P,∴Rt△ABP∽Rt△EBA,∴==,∴BP=2AP.②如图,过点C作CH⊥BE于点H,则∠BCH+∠PBC=90°,又∠ABP+∠PBC=90°,∴∠BCH=∠ABP,又BC=AB,∴Rt△BCH≌Rt△ABP(AAS),∴BH=AP,又BP=2AP,∴BH=PH,又CH⊥BE,∴PC=BC.(2)如图,同(1)②可证:Rt△AFD≌Rt△BEA,∴AF=BE,在Rt△BEA中,若设AE=1,则AB=2,BE=,∵AP⊥BE于点P,∴AP•BE=AB•AE,∴AP==,则PF=AF﹣AP=BE﹣AP=﹣=,∴=.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5.分两种情况:①当△MBN∽△ABC时,则,即,解得:t=.②当△NBM∽△ABC时,同理可得:t=,综上所述:当t=或时,△MBN与△ABC相似;(2)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即=,解得:MD=t.设四边形ACNM的面积为y,y=×5×5﹣(5﹣t)t=(t﹣2.5)2+.根据二次函数的性质可知,当t=2.5时,y的值最小值为.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)△BAP∽△CPD,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,又∵∠APD=∠B,∴∠DPC=∠BAP,∴△BAP∽△CPD;(2)∵PD∥AB,∴∠APD=∠BAP,又∵∠APD=∠B,∴∠BAP=∠B=∠C,又∵∠B=∠B,∴△ABC∽△PBA,∴,∴,∴BP=.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.【解答】解:如图,过点E作EH∥AB交BG于点H,则有△ABF∽△EHF,∴,∴AB=3EH.∵四边形ABCD是平行四边形,∴AB∥CD,又∵EH∥AB,∴EH∥CD,CD=AB=3HE,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴==.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.【解答】证明:(1)∵C为的中点,∴=,∴∠BAC=∠CAD,∵AB是直径,∴∠BCA=90°=∠ACE,∴∠E=∠ABC,∴AB=AE;(2)∵AB=AE=5,∠ACB=90°,∴CE=BC=EB,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠EDC=180°,∴∠EDC=∠ABC,又∵∠E=∠E,∴△EDC∽△EBA,∴,∴,∴EC=.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,AD=BC,∴∠ADE=∠DEC,∠B+∠C=180°,∵∠AFB=∠B,∠AFE+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC;(2)∵△ADF∽△DEC,∴,∴,∴DE=12,∵AE2=DE2﹣AD2=144﹣64=80,∴AE=4.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=t cm,CP=(4﹣2t)cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.【解答】解:(1)经过t秒后,CQ=t,CP=4﹣2t,故答案为:t;(4﹣2t).(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即,解得t=1.2;②若Rt△ABC∽Rt△PQC则,即,解得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或秒.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.【解答】证明:∵∠DAB=∠ECB,∠ABD=∠CBE,∴△ABD∽△CBE,∴=,即,∵∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+CBE,∵,∠ABC=∠DBE,∴△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.【解答】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.【解答】解:(1)证明:∵BF、CE分别是△ABC的边AC、AB上的高,∴BF⊥AC,CE⊥AB,∴∠AFB=∠AEC=90°,又∵∠CAE=∠BAF,∴△ABF∽△ACE;(2)证明:∵△ABF∽△ACE,∴=,∴=,又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=①,∠AEF=∠ACB,∵AN是∠BAC的角平分线,∴∠EAM=∠CAN,∴△EAM∽△CAN,∴=②,由①②可得:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;【解答】解:(1)∵∠ABC=90°,F是AC的中点,∴BF=AC=AF,∴∠F AB=∠FBA,∵AG⊥BE,∴∠AGB=90°,∴∠ABC=∠AGB,∴△ABC∽△BGA;(2)∵AF=5,∴AC=2AF=10,BF=5,∵△ABC∽△BGA,∴=,∴BG==,∴FG=BG﹣BF=﹣5=.14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.【解答】证明:(1)如图,过点Q作QF∥BC交AD于F,∴△FQE∽△DPE,∴=,又∵QE=EP,∴BD=FQ,EF=DE,∵QF∥CD,∴△AFQ∽△ADC,∴,∴,∴;(2)如图,过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,∴QF∥PH,∴△FQE∽△HPE,∴,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ∥BC,∴△AQF∽△ACD,∴,∵PH∥BC,∴△APH∽△ABD,∴,∴===.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.【解答】证明:(1)∵△ADE∽△ABC,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴,∠ABD=∠ACE,又∵BD=3,∴CE=2,∴CD=CE=2,∵∠ABD+∠ACD=90°,∴∠ACD+∠ACE=90°,∴∠DCE=90°,∴DE=CD=2.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.【解答】(1)证明:由圆周角定理得,∠A=∠B,∠D=∠C,∴△ADE∽△BCE,∴=,∴AE•CE=BE•DE;(2)解:由(1)得,AE•CE=BE•DE,则4×3=BE×(8﹣BE),解得,BE1=2,BE2=6,即线段BE的长为2或6.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.【解答】证明:(1)∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵,∴△ABD∽△ACE;(2)如图,∵△ABD∽△ACE,∴∠ADB=∠AEC=90°,∠BAD=∠CAE=30°,∴CE=AC=2,AE=CE=2,∠ACE=60°,∴∠DCE=∠ACD+∠ACE=90°,∵,∴=,∴DE=3,∴CD===.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.【解答】(1)证明:∵∠ADE+∠B=180°,∠ADE+∠CDE=180°,∴∠CDE=∠B,而∠DCE=∠BCA,∴△CDE∽△CBA;(2)连接BD,如图,∵AB为直径,∵∠BDC=90°,∠C=60°,∴BC=2CD,∵△CDE∽△CBA;∴==,∴DE=AB=×4=2.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为2.【解答】解:(1)∵以DE为直径的圆交对角线AC于F,∴∠EAG=∠EDF,∠EFD=90°,∵EG⊥AC垂足为G,∴∠EGA=90°=∠EFD,∴△EFD∽△EGA;(2)∵在矩形ABCD中,AB=4,BC=4,∴∠EAD=90°=∠EFD,∴tan∠EAG===,∴在三角形EGA中,sin∠EAG==,∵∠EGF=∠EAD=90°,∵DE为圆的直径,∴∠GFE=∠ADE,∴△EGF∽△EAD,∴==,∵DA=BC=4,∴FG=2;(3)过点G作GM⊥AD于点M,如下图所示:设AE=2x,∵∠EAG=30°,∴∠GAM=60°,∴EG=x,GA=x,∴在直角三角形GAM中,AM=x,GM=x,∵AD=BC=4,∴MD=4﹣x,∴在直角三角形GMD中,GD2=GM2+MD2,∴GD2=x2+16+x2﹣4x=3x2﹣4x+16,∵在直角三角形AED中,直径ED=,∵在直角三角形EFD中,∠EDF=∠EAG=30°,∴DF=×ED,∴DF2=3x2+12,∵当DF=DG时,DF+DG取最小值,∴3x2﹣4x+16=3x2+12,∴x=,∴DF=,DG=,∴DF+DG取最小值为2.故答案为:2.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.【解答】解:(1)证明:∵AC是⊙O的切线,∴AC⊥CF,∴∠ACF=90°,∴∠A+∠AFC=90°,∴∠A+∠BCD+∠ABC=90°,又∠CDE=∠ABC,∠A=∠CDE,∴2∠A+∠BCD=90°,∵CD是⊙O的直径,∴∠CBD=90°,∴∠BCD+∠CDB=90°,∴∠CDB=2∠A;(2)过C作CH⊥AB于H,交BD的延长线于G,如图:∵∠DCH+∠ACH=90°,∠A+∠ACH=90°,∴∠DCH=∠A,又∵∠CDB=2∠A;∴∠CDB=2∠DCH,∴∠G=∠DCH,∴CD=DG.∵BD=1,BC=,在Rt△BCD中,CD=,∴DG=3,∴BG=BD+DG=4,CG=,∴cos∠G=,∴cos∠A=,又cos∠A=,∴AH=AC•cos∠A=,AF=,∵∠A=∠CDE,∠ABC=∠CDE,∴∠A=∠ABC,∴AC=BC,∴AB=2AH=,∴BF=AB﹣AF=.。
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。
其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。
九年级下册数学(人教版)相似三角形练习题学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共33小题,每小题分,共0分)1.“相似的图形”是()A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形2.下列图形中一定相似的是()A.所有矩形B.所有等腰三角形C.所有等边三角形D.所有菱形3.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形C.两个五边形D.两个正方形4.用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍5.如果x∶(x+y)=3∶5,那么x∶y等于()A .B .C .D .6.已知===,则a+c+e=6,则b+d+f等于()A. 12 B. 9 C. 6 D. 47.在比例尺是1∶500的图纸上,测得一块长方形的土地长5厘米,宽4厘米,这块地的实际面积是()A. 20平方米B. 500平方米C. 5 000平方米D. 500 000平方米8.两个多边形相似的条件是()A.对应角相等B.对应边成比例C.对应角相等或对应边成比例D.对应角相等且对应边成比例9.一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A. 18 B. 12C. 24 D. 3010.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD等于()A. 2 B. 2.4C. 2.5 D. 311.如图,若l1∥l2∥l3,则下列各式错误的是()A .=B .=C .=D .=12.如图,AB∥CD,AD与BC相交于点O,若AO=2,DO=4,BO=3,则BC的长为()A. 6 B. 9C. 12 D. 1513.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E ,如果=,那么等于()A .B .C .D .14.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A .B .C .D .15.若△ABC~△DEF,相似比为3∶2,则对应高的比为()A. 3∶2 B. 3∶5C. 9∶4 D. 4∶916.如果两个相似三角形对应边之比是1∶4,那么它们的对应中线之比是()A. 1∶2 B. 1∶4C. 1∶8 D. 1∶1617.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连接AB并延长到C,连接CO,若△COB∽△CAO,则点C的坐标为()A. (1,) B. (,)C. (,2) D. (,2)18.若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则它们的周长比为()A. 1∶4 B. 1∶2C. 2∶1 D. 1∶19.将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的()A. 9倍B. 3倍C. 81倍D. 18倍20.△ABC与△DEF的相似比为1∶3,则△ABC和△DEF的面积比为()A. 1∶B .∶1C. 9∶1 D. 1∶921.已知△ABC∽△DEF,S△ABC∶S△DEF=1∶4.若BC=1,则EF的长为()A. 1 B. 2C. 3 D. 422.两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是()A. 52 B. 54C. 56 D. 5823.两相似三角形的最短边分别是5 cm和3 cm,它们的面积之差为32 cm2,那么小三角形的面积为()A. 10 cm2 B. 14 cm2C. 16 cm2 D. 18 cm224.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A .=B .=C .=D .=25.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A. 1.25尺B. 57.5尺C. 6.25尺D. 56.5尺26.如图:边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A. 60B. 64C. 68D. 7227.志远要在报纸上刊登广告,一块10 cm×5 cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A. 540元B. 1 080元C. 1 620元D. 1 800元28.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50 cm,镜面中心C距离旗杆底部D的距离为4 m,如图所示.已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4 cm,则旗杆DE的高度等于()A. 10 m B. 12 m C. 12.4 m D. 12.32 m29.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A. 3米B. 4米C. 4.5米D. 6米30.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1∶2,∠OCD=90°,CO =CD,若B(1,0),则点C的坐标为()A. (1,-2) B. (-2,1)C. (,) D. (1,-1)31.如图,在平面直角坐标系中,有两点A(6,4)、B(6,0),以原点O 为位似中心,相似比为,在第一象限内把线段AB缩小到线段CD,则点C的坐标为()A. (3,3) B. (3,2)C. (2,3) D. (2,2)32.如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A. 1 B. 2C. 3 D. 433.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4∶9,则OB′∶OB为()A. 2∶3 B. 3∶2C. 4∶5D. 4∶9分卷II二、填空题(共15小题,每小题分,共0分)34.在比例尺为1∶40 000的地图上,某条道路的长为7 cm,则该道路的实际长度是__________ km.35.如图,E、F分别是平行四边形ABCD的边AD、BC的中点,若四边形AEFB与四边形ABCD 相似,AB=4,则AD的长度为__________.36.一个三角形的三边之比为3∶4∶5,另一个三角形的最短边长为8,另外两边长为__________,__________时,这两个三角形相似.37.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s 的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C 同时出发,设运动时间为t s,当t=__________时,△CPQ与△CBA相似.38.在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=__________时,以A、D、E为顶点的三角形与△ABC相似.39.如果两个相似三角形对应角平分线的比是4∶9,那么它们的周长比是________.40.已知Rt△ABC∽Rt△A1B1C1且相似比为3∶4,若Rt△ABC的最长边长为12 cm,则Rt△A1B1C1最长边的中线长为__________ cm.41.已知△ABC∽△DEF,且S △ABC=4,S△DEF=25,则=________.42.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为__________,面积为__________.43.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分. ①,②,③这三块的面积比依次为1∶4∶41,那么④,⑤这两块的面积比是____________.44.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为__________.45.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.46.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.47.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为____________米.48.如图所示,一条河的两岸有一段是平行的,河宽36米,在河的南岸边每隔几米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边24米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则每两棵树间的间隔__________米.三、解答题(共16小题,每小题分,共0分)49.已知:a∶b=3∶2,b∶c=∶0.3,求a∶b∶c.50.已知:==,x-y+z=6,求:代数式3x-2y+z的值.51.如图,已知AD∥BE∥CF,它们依次交直线l 1、l2于点A、B、C和点D、E、F,=,AC=14;(1)求AB、BC的长;(2)如果AD=7,CF=14,求BE的长.52.如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,点F是DE延长线上的点,=,连接FC,若=,求的值.53.如图,O为△ABC内一点,点D,E,F分别为OA,OB,OC的中点,求证:△DEF∽△ABC.54.如图所示,不共面的三条直线交于O点,在O点的同侧上分别取点A和A′,B和B′,C和C′,使得==,求证:△ABC∽△A′B′C′.55.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?56.已知如图,D,E分别是△ABC的边AB,AC上的点,AD=3,AB=8,AE=4,AC=6.求证:△ADE∽△ACB.57.如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.58.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.59.等腰Rt△ABC∽Rt△A′B′C′,相似比为3∶1,已知斜边AB=12 cm.(1)求△A′B′C′斜边A′B′的长;(2)求△A′B′C′斜边A′B′上的高.60.求证:相似三角形对应角平分线的比等于相似比.已知:如图1,已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,△ABC和△A1B1C1的相似比为k,AD、A1D1分别是△ABC和△A1B1C1的角平分线.求证:=k.61.如图,直角三角形ABC到直角三角形DEF是一个相似变换,AC与DF的长度之比是3∶2.(1)DE与AB的长度之比是多少?(2)已知直角三角形ABC的周长是12 cm,面积是6 cm2,求直角三角形DEF的周长与面积.62.如图,已知:D,E分别是△ABC的AB,AC边上的点,且△ABC∽△ADE,AD∶DB=1∶3,DE=2,求BC的长.63.已知直线l1∥l2∥l3,等腰直角△ABC的三个顶点A,B,C分别在l1,l2,l3上,若∠ACB=90°,l1,l2的距离为1,l2,l3的距离为3,求:(1)线段AB的长;(2)的值.64.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE·CD=AD·CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,连接AF.求证:DF=AF.答案解析1.【答案】A【解析】相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.【答案】C【解析】A.所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;B.所有等腰三角形,属于形状不唯一确定的图形,不一定相似,故错误;C.所有等边三角形,图形的形状相同,但大小不一定相同,符合相似性的定义,故正确;D.所有菱形,属于形状不唯一确定的图形,不一定相似,故错误.故选C.3.【答案】D【解析】A.两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B.两个等腰三角形顶角不一定相等,故不符合题意;C.两个五边形,对应角相等,对应边不一定成比例,故不符合题意;D.两个正方形,形状相同,大小不一定相同,符合相似性定义,故符合题意.故选D.4.【答案】A【解析】∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍,则A错误,符合题意.故选A.5.【答案】D【解析】∵x∶(x+y)=3∶5,∴5x=3x+3y,2x=3y,∴x∶y=3∶2=,故选D.6.【答案】B【解析】由===,得a=b,c=d,e=f,则b+d+f=6,即(b+d+f)=6,∴b+d+f=6×=9,故选B.7.【答案】B【解析】∵比例尺是1∶500,长方形的土地长5厘米,宽4厘米,∴实际长为5÷=2 500厘米=25米,宽为4÷=2 000厘米=20米,∴实际面积为25×20=500平方米,故选B.8.【答案】D【解析】∵对应角相等且对应边成比例的多边形相似,∴D符合定义,故选D.9.【答案】A【解析】设这个多边形的最长边是x,则=,解得x=18.故选A.10.【答案】A【解析】∵矩形ABCD∽矩形ADFE,∴=,∵AE=1,AB=4,∴=,解得AD=2.故选A.11.【答案】D【解析】∵l1∥l2∥l3,∴=,=,∴=故选D.12.【答案】B【解析】∵AB∥CD,∴=;∵AO=2,DO=4,BO=3,∴=,解得CO=6,∴BC=BO+CO=3+6=9.故选B.13.【答案】B【解析】∵DE∥AB,∴==,∵AD为△ABC的角平分线,∴==;故选B.14.【答案】A【解析】∵△ABC∽△DEF,△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选A.15.【答案】A【解析】∵△ABC~△DEF,相似比为3∶2,∴对应高的比为3∶2.故选A.16.【答案】B【解析】∵两个相似三角形对应边之比是1∶4,又∵相似三角形的对应高、中线、角平分线的比等于相似比,∴它们的对应中线之比为1∶4.故选B.17.【答案】B【解析】∵A(-4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴====,∴CO=2CB,AC=2CO,∴AC=4CB,∴=,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴===,∴CD=AO=,BD=OB=,∴OD=OB+BD=2+=,∴点C的坐标为.故选B.18.【答案】B【解析】∵△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,∴它们的周长比为1∶2.故选B.19.【答案】B【解析】∵两个相似三角形的面积比为1∶9,∴这两个相似三角形的相似比为1∶3,∴这两个相似三角形的周长比为1∶3,∴周长扩大为原来的3倍,故选B.20.【答案】D【解析】∵相似△ABC与△DEF的相似比为1∶3,∴△ABC与△DEF的面积比为1∶9.故选D.21.【答案】B【解析】∵△ABC∽△DEF,S△ABC∶S△DEF=1∶4,∴BC∶EF=1∶2,∵BC=1,∴EF=2,故选B.22.【答案】B【解析】∵两相似三角形的周长分别是36和12∴相似比为3∶1,∵周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,∴周长较大的三角形的最小边为9,周长较小的三角形的最大边为5,∴周长较大的三角形的第三条边为12,∴两个三角形均为直角三角形,∴周长较大的三角形的面积=×9×12=54,故选B.23.【答案】D【解析】根据题意,两个三角形的相似比是5∶3,面积比就是25∶9,大小面积相差16份,所以每份的面积是32÷16=2( cm2),所以小三角形的面积为2×9=18( cm2).故选D.24.【答案】C【解析】A.∵DE∥BC,∴△ADE∽△ABC,∴=,故A错误;B.∵DE∥BC,∴=,故B错误;C.∵DE∥BC,∴=,故C正确;D.∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选C.25.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.26.【答案】C【解析】如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD=4,∴EC2=42+42,即EC=4,∴S2的面积为EC2=32,∵S1的边长为6,S1的面积为6×6=36,∴S1+S2=32+36=68.故选C27.【答案】C【解析】∵一块10 cm×5 cm的长方形版面要付广告费180元,∴每平方厘米的广告费为180÷50=元,∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×=1 620元故选C.28.【答案】B【解析】由题意可得AB=1.5 m,BC=0.4 m,DC=4 m,△ABC∽△EDC,则=,即=,解得DE=12,故选B.29.【答案】D【解析】如图,由题意得,△ACD∽△ABE,∴=,即=,解得BE=6,即树的高度为6米.故选D.30.【答案】D【解析】∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1∶2,∴点C的坐标为(1,-1).故选D.31.【答案】B【解析】∵点A(6,4),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小到线段CD,∴点C的坐标为(6×,4×),即(3,2),故选B.32.【答案】D【解析】由位似图形的画法可得:4个图形都是△ABC的位似图形.故选D.33.【答案】A【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A′B′C′与△ABC的面积的比4∶9,∴△A′B′C′与△ABC的相似比为2∶3,∴=,故选A.34.【答案】2.8【解析】设这条道路的实际长度为x,则=,解得x=280 000 cm=2.8 km.∴这条道路的实际长度为2.8 km.35.【答案】4【解析】设AE=x,则AD=2x,∵四边形ABCD与矩四边形ABFE是相似的,∴=,∴AB2=2x2,∴AB=x=4,∴x=2,∴AD=4.36.【答案】【解析】∵如果两个三角形的三组对应边的比相等,那么这两个三角形相似,∴当另一个三角形的三边的比为3∶4∶5时,这两个三角形相似,∵另一个三角形的最短边长为8,∴另外两边长为,.37.【答案】4.8或【解析】CP和CB是对应边时,△CPQ∽△CBA,所以=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.38.【答案】或【解析】当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===.39.【答案】4∶9【解析】∵两个相似三角形对应角平分线的比是4∶9,∴它们的相似比为4∶9,∴它们的周长比为4∶9.40.【答案】8【解析】设Rt△A1B1C1最长边为x cm,∵Rt△ABC∽Rt△A1B1C1且相似比为3∶4,∴12∶x=3∶4,解得x=16,则Rt△A1B1C1最长边的中线长为8 cm,41.【答案】【解析】∵△ABC∽△DEF,且S△ABC=4,S△DEF=25,∴==.42.【答案】90270【解析】设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等,∴==,解得a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.43.【答案】9∶14【解析】由题意,得①、②、④都是等腰直角三角形,∵①,②这两块的面积比依次为1∶4,∴设①的直角边为x,∴②的直角边为2x,设正方形的边长为y,∵①,③这两块的面积比依次为1∶41,∴①∶(①+③)=1∶42,即x2∶3xy=1∶42,∴y=7x,∴④的面积为6x·6x÷2=18x2,⑤的面积为4x·7x=28x2,∴④,⑤这两块的面积比是18x2∶28x2=9∶14.44.【答案】9∶4【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,∴△ABC与△DEF的相似比是3∶2,∴△ABC与△DEF的面积之比为9∶4.45.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴=,即=,∴MN=1,故答案为1.46.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.47.【答案】5【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,=,即=,解得AM=5 m.则小明的影长为5米.48.【答案】5【解析】如图,过点P作PE⊥DC,交AB于点F,设每两棵树间的间隔x m,根据题意可得:∵AB∥CD∴△ABP∽△DPC,∴=,∴=,解得x=5.49.【答案】解∵b∶c=∶0.3,∴b∶c=(×4)∶(0.3×4)=2∶1.2;∵a∶b=3∶2,∴a∶b∶c=3∶2∶1.2=(3×5)∶(2×5)∶(1.2×5)=15∶10∶6.【解析】首先根据b∶c=∶0.3,可得b∶c=2∶1.2;然后根据a∶b=3∶2,求出a∶b∶c的值是多少即可.50.【答案】解设===k,可得x=2k,y=3k,z=4k,把x=2k,y=3k,z=4k代入x-y+z=6,可得2k-3k+4k=6,解得k=2,所以x=4,y=6,z=8,把x=4,y=6,z=8代入3x-2y+z=12-12+8=8.【解析】根据比例的性质,可用设===k,进而解答即可.51.【答案】解(1)∵AD∥BE∥CF,∴==,∴=,∵AC=14,∴AB=4,∴BC=14-4=10;(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥CF,AD=7,∴AD=HE=GF=7,∵CF=14,∴CG=14-7=7,∵BE∥CF,∴==,∴BH=2,∴BE=2+7=9.【解析】(1)由平行线分线段成比例定理和比例的性质得出=,即可求出AB的长,得出BC的长;(2)过点A作AG∥DF交BE于点H,交CF于点G,得出AD=HE=GF=7,由平行线分线段成比例定理得出比例式求出BH,即可得出结果.52.【答案】解∵DE∥BC,∴=,又∵=,∴=,∴AB∥CF,∴=,∵=,∴==2,∴=2.【解析】由平行线分线段成比例定理和已知条件得出=,证出AB∥CF,再由平行线分线段成比例定理和比例的性质即可得出结果.53.【答案】证明∵D、E、F分别是OA、OB、OC的中点,∴DE=AB,EF=BC,DF=AC,即==,∴ABC∽△DEF.【解析】先根据三角形中位线性质得到DE=AB,EF=BC,DF=AC,则可利用三组对应边的比相等的两个三角形相似得到结论.54.【答案】证明如图,∵=,∴A′B′∥AB,∴=.同理A′C′∥AC,B′C′∥BC,∴==,∴==.∴△ABC∽△A′B′C′.【解析】利“平行线截线段成比例”推知△ABC与△A′B′C′的对应边相互平行,则△ABC∽△A′B′C′.55.【答案】解△ABE与△DEF相似.理由如下:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=AD=CD,设AB=AD=CD=4a,∵E为边AD的中点,CF=3FD,∴AE=DE=2a,DF=a,∴==2,==2,∴=,而∠A=∠D,∴△ABE∽△DEF.【解析】先根据正方形的性质,得∠A=∠D=90°,AB=AD=CD,设AB=AD=CD=4a,利用E为边AD的中点,CF=3FD,得到AE=DE=2a,DF=a,则可计算出=,加上∠A=∠D,于是根据相似三角形的判定方法即可得到△ABE∽△DEF.56.【答案】证明∵AD=3,AB=8,AE=4,AC=6,∴==,又∵∠DAE=∠CAB,∴△ADE∽△ACB.【解析】首先根据已知得出AD∶AC=AE∶AB,又因为∠DAE=∠CAB,进而得出△ADE∽△ACB.57.【答案】证明(1)∵四边形ABCD为正方形,△EDF为等腰直角三角形,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF;(2)延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.【解析】(1)由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS 即可得证;(2)由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.58.【答案】证明(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=∠BAC=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠EAF=∠ABE,∵∠AEF=∠BEA,∴△AEF∽△ABE.【解析】(1)由△ABC是等边三角形,根据等边三角形的性质可得:AB=BC,∠ABD=∠C=60°,继而根据SAS即可证得△ABD≌△BCE;(2)由△ABD≌△BCE,可证得∠BAD=∠CBE,进一步得到∠EAF=∠ABE,然后根据有两角对应相等的三角形相似,即可得△AEF∽△ABE.59.【答案】解(1)∵等腰Rt△ABC∽Rt△A′B′C′,相似比为3∶1,∴AB∶A′B′=3∶1,∵Rt△ABC的斜边AB=12 cm,∴△A′B′C′斜边A′B′=4 cm;(2)∵△A′B′C′是等腰直角三角形,∴△A′B′C′斜边A′B′上的高=△A′B′C′斜边A′B′上的中线,∴△A′B′C′斜边A′B′上的高=2 cm.【解析】(1)由等腰Rt△ABC∽Rt△A′B′C′,相似比为3∶1,根据相似比的定义,可得AB∶A′B′=3∶1,继而求得答案;(2)由△A′B′C′是等腰直角三角形,利用三线合一的性质,可得△A′B′C′斜边A′B′上的高即是斜边A′B′上的中线,继而求得答案.60.【答案】解∵△ABC∽△A1B1C1,∴∠B=∠B1,∠BAC=∠B1A1C1,∵AD、A1D1分别是△ABC和△A1B1C1的角平分线,∴∠BAD=∠B1A1D1,又∠B=∠B1,∴△BAD∽△B1A1D1,∴==k.【解析】根据相似三角形的性质定理得到∠B=∠B1,∠BAC=∠B1A1C1,根据相似三角形的判定定理证明△BAD∽△B1A1D1,根据相似三角形的性质定理得到答案.61.【答案】解(1)由相似变换可得DE∶AB=DF∶AC=2∶3;(2)∵AC∶DF=3∶2,∴△DEF的周长∶△ABC的周长=2∶3,S△DEF∶S△ABC=4∶9,∵直角三角形ABC的周长是12 cm,面积是6 cm2∴△DEF的周长为8 cm,S △DEF=cm2.【解析】根据相似三角形的对应边的比等于相似比,周长比等于相似比,面积比等于相似比的平方解题即可.62.【答案】解∵AD∶DB=1∶3,∴AD∶AB=1∶4,∵△ABC∽△ADE,∴AD∶AB=DE∶BC,∵DE=2,∴BC=8.【解析】先根据AD∶DB=1∶3,变形得到AD∶AB的值,再根据相似三角形对应边成比例求解即可.63.【答案】解(1)过A作AN⊥直线l3于N,过B作BM⊥l3于M,则∠BMC=∠ANC=∠BCA=90°,∴∠BCM+∠MBC=90°,∠BCM+∠ACN=90°,∴∠MBC=∠ACN,在△BMC和△CNA中∴△BMC≌△CNA,∴BM=CN,AN=CM,∵l1,l2的距离为1,l2,l3的距离为3,∴BM=CN=3,CM=AN=1+3=4,在Rt△BMC中,由勾股定理,得BC=AC==5,在Rt△ACB中,由勾股定理,得AB==5;(2)∵直线l2∥直线l3,∴∠DBC=∠BCM,∵∠BCD=∠BMC=90°,∴△BCD∽△CMB,∴=,∴=,∴BD=,∵AB=5,∴==.【解析】64.【答案】证明(1)∵AE·CD=AD·CE,∴=,∵∠DAB=∠B,∴AD=BD,∴=,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF·AB,∵AD=BD,∴AD2=DF·AB,∴==1,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴=,∴DF=AF.【解析】。
完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。
2) $(2-x):x=x:(1-x)$。
则$x=\underline{1}$。
3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。
4) 圆的周长与其直径的比为\underline{$\pi$}。
5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。
6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。
7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。
8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。
2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。
答案:B。
2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。
九年级下数学相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求A E F ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求C D F S ∆. 例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S . 例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆, 又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则C A E B A D ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AE CA AD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠,∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEAC AD AB =. 在ABC ∆和ADE ∆中,∵AE AC AD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同.(3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,, ∴a a c c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆. 答:(1)、(2)不正确.(3)、(4)正确.例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GF EC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAF EC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGF EC DF =. 又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米.例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了. 解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦. 例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E ,又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等;(5)ABD ∆∽ACB ∆两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等. 例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系. 证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC .又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且A B C ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b d c a =,或c a a b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C . 又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S . 例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F 作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆. 因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH . 由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FE FH KE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x ,∵G F ∥AB ,∴AC FC AB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB , 在Rt △APC 中,由勾股定理得CP =1,∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x-=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.。
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
初中数学试卷
九年数学下第27章《相似三角形》复习题及答案
一.选择题
(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ) A.DB AD =EC BF B.AC AB =FC
EF C.DB AD =FC BF D.EC AE =BF AD (2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( ) A.138 B.346 C.135 D.不确定
(3)在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( )
A.△ABD ∽△BCD
B.△ABC ∽△BDC
C.△ABC ∽△ABD
D.不存在
(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )
A.1∶3∶5∶7
B.1∶2∶3∶4
C.1∶2∶4∶5
D.1∶2∶3∶5
(5)下列命题中,真命题是( )
A.有一个角为30°的两个等腰三角形相似
B.邻边之比都等于2的两个平行四边形相似
C.底角为40°的两个等腰梯形相似
D.有一个角为120°的两个等腰三角形相似
(6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )
A.5
B.6
C.7
D.8 (7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )
A.EF >CD
B.EF=CD
C.EF <CD
D.不能确定
(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC 。
其中正确的个数是( )
A.0个
B.1个
C.2个
D.3个
(9)D为△ABC的AB边上一点,若△ACD∽△ABC,应满足条件有下列三种可能①∠ACD=∠B
②∠ADC=∠ACB ③AC2=AB·AD,其中正确的个数是( )
A.0个
B.1个
C.2个
D.3个
(10)下列命题错误的是( )
A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似
B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似
C.如果两个平行四边形相似,则它们对应高的比等于相似比
D.对应角相等,对应边成比例的两个多边形相似
二、填空题
(1)比例的基本性质是________________________________________
(2)若线段a=3cm,b=12cm,a、b的比例中项c=________,a、b、c的第四比例线段d=________
(3)如下图,EF∥BC,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=________,BN∶NC=________
(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________
(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________
(6)已知CD是Rt△ABC斜边AB上的高,则CD2=________
(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.
(8)Rt△ABC中,∠C=90°,CD为斜边上的高。
若AC∶AB=4∶9,则AD∶BD=________
(9)把62cm的线段分成三部分,它们的比为3∶2∶5,则最长段为________
(10)若D为△ABC边BC之中点,E为AD的中点,BE交AC于F,则AF∶FC=________
三、.已知平行四边形ABCD中,AE∶EB=1∶2,求△AEF与△CDF的周长比,如果S△AEF=6cm2,求S△CDF.
四.如下图,已知在△ABC中,AD平分∠BAC,EM是AD的中垂线,交BC延长线于E.求证:DE2=BE·CE.
五、已知如图,在平行四边形ABCD 中,DE=BF,求证:
DQ CD =PQ PD .
六、过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ,求证:AE ∶ED=2AF ∶FB.
七、如果四边形ABCD 的对角线交于O ,过O 作直线OG ∥AB 交BC 于E ,交AD 于F ,交CD 的延长线于G ,求证:OG 2=GE·GF.七.提示:过E 点作EH ∥BD 交CD 于H ,连接HO ,由
CA CO =CD CH 得HO ∥AD ,这时
GO GF =GH GD ,由OD ∥EH ,得GE GO =GH
GD ,即可证
八、如下图,在△ABC 中,D 、E 分别为BC 的三等分点,CM 为AB 上
的
中线,CM 分别交AE 、AD 于F 、G ,则CF ∶FG ∶GM=5∶3∶2
九、如下图,△ABC 中,AD ∥BC ,连结CD 交AB 于E ,且AE ∶EB=1∶3,
过E
作EF ∥BC ,交AC 于F ,S △ADE =2cm 2,求S △BCE ,S △AEF .
十、已知:线段AB ,分点C 将AB 分成3∶11两组,分点D 将AB 分成5∶9两段,且CD=4cm,求AB 的长.
十一、下图中,E 为平行四边形ABCD 的对角线AC 上一点,AE ∶EC=1∶3,
BE 的
延长线交CD 的延长线于G ,交AD 于F ,求证:BF ∶FG=1∶2.
参考答案
一..(1)C (2)A (3)B (4)A (5)D (6)B (7)B (8)C (9)D (10)D
二.(1)略 (2)6,24 (3)2∶3,1∶2 (4)5∶2;25∶4 (5)2∶2 (6)AD·BD (7)100,10 (8)16∶65
(9)31 (10)1∶2
三.1∶3,S △CDF =54cm 2
四.提示:连接AE ,则AE=DE,证△AEC ∽△BEA
五.略 六.略
七.提示:过E 点作EH ∥BD 交CD 于H ,连接HO ,由
CA CO =CD CH 得HO ∥AD ,这时GO GF =GH GD ,由OD ∥EH ,得
GE GO =GH
GD ,即可证 八、略
九.提示:连接MD ,证F 为MC 中点,MD=2EF,AE=2MD,∴CF ∶GF ∶GM=5∶3∶2
十.S △BCE =18cm 2 S △AEF =1.5cm 2 11.28cm
十一略。
十二.△AEF ∽△CEB ,AF ∶BC=AF ∶AD=1∶3,则AF ∶FD=1∶2,又△ABF ∽△GDF ,则BF ∶FG=1∶2。