第四章 遥感图像处理——辐射校正
- 格式:ppt
- 大小:648.50 KB
- 文档页数:15
遥感影像辐射校正方法与技巧引言:遥感技术在现代社会的应用日益广泛,无论是环境监测、农业发展还是城市规划,遥感影像都起到了不可或缺的作用。
然而,遥感影像需要进行辐射校正,以准确反映地物的光谱信息。
本文将介绍遥感影像辐射校正的方法与技巧。
一、什么是辐射校正辐射校正是遥感影像处理中的一项重要任务,通过消除大气、地表反射和传感器响应等误差,实现影像灰度与反射率、辐射率之间的转换。
辐射校正的目的是减小影像的空间和光谱差异,以便更好地进行后续分析和应用。
二、辐射校正的方法1. 经验模型方法经验模型方法适用于辐射校正的初步处理。
通过建立传感器响应与地物反射之间的经验模型,根据遥感影像中的亮度值进行校正。
这种方法适用于像素值的非线性校正,但不适用于不同光谱区域之间的校正。
2. 大气校正方法大气校正是辐射校正的关键步骤之一。
大气校正通过模拟大气的辐射传输过程,估算并消除大气对遥感影像的影响。
目前,主要的大气校正方法包括常规大气校正、基于模型的大气校正和基于辐射传输模型的大气校正等。
3. 地表反射校正方法地表反射校正是辐射校正中的另一重要步骤,主要解决地物反射率的转换问题。
地表反射校正方法可以分为基于定标面的校正和基于统计的校正两种。
其中,基于定标面的校正方法需要采集大量的地面参考数据,而基于统计的校正方法则通过统计地物的光谱反射特征进行校正。
三、辐射校正的技巧1. 模型选择与参数估计在进行辐射校正时,需要选择合适的模型和正确估计模型参数。
为了提高辐射校正的准确性,可通过大量的实地观测数据进行参数估计。
同时,对不同地区和不同影像进行适当调整和优化,以提高校正的精度。
2. 数据预处理在进行辐射校正之前,需要对遥感影像进行一定的数据预处理。
主要包括大气润湿校正、坐标转换、几何校正等。
这些预处理步骤有助于减小数据误差,提高辐射校正的精度。
3. 校正结果评价进行辐射校正后,需要对校正结果进行评价。
评价指标包括辐射定标误差、地物反射率的准确度等。
第四章遥感图像的辐射纠正
教学目标:
1、本章要求学生了解引起遥感图像辐射畸变的原因,以及进行遥感图像辐射纠
正的必要性;
2、理解并掌握辐射定标的概念和进行辐射定标的方法,以及使用ENVI进行辐
射定标的方法;
3、理解并掌握大气对遥感图像的影响和进行大气纠正的方法,以及使用6s辐射
传输模块进行遥感图像大气纠正的方法;
教学内容:
1、遥感图像辐射纠正的概念
2、引起辐射畸变的因素
3、辐射定标的内容、原理和方法
4、使用ENVI进行遥感图像的辐射定标
5、大气纠正的原理和方法
6、使用6S辐射传输模型进行大气纠正
一、遥感图像辐射纠正的概念
利用传感器观测目标的反射或发射能量时,传感器所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量是不一致的,这是因为测量值中包含了太阳位置条件、薄雾等大气条件、或因传感器的性能不完备等条件所引起的失真。
为了正确评价目标的反射或发射特性必须消除这些失真。
消除依附在辐射亮度中的由于大气等因素引起的各种失真的过程叫做辐射纠正(Radiometric calibration)。
如上图所示,进入传感器的辐射能量包括三部分:太阳直射经地表反射直接进入传感器的部分、太阳直射经大气散射后漫入射到地表的能量再进入传感器的部分、。
遥感影像的辐射校正与处理技术在当今科技飞速发展的时代,遥感技术作为一种获取地球表面信息的重要手段,发挥着越来越关键的作用。
而遥感影像的辐射校正与处理技术,则是确保遥感数据质量和可用性的重要环节。
遥感影像本质上是通过传感器接收到的地物反射或发射的电磁波能量所形成的图像。
然而,在获取影像的过程中,由于多种因素的影响,影像的辐射值可能会出现偏差或失真,这就需要进行辐射校正。
辐射校正的目的是消除或减少这些影响,使得影像能够准确反映地物的真实辐射特性。
造成遥感影像辐射误差的原因众多。
首先,传感器自身的性能差异会导致响应不一致。
不同的传感器对相同的地物可能会产生不同的测量值。
其次,大气对电磁波的散射和吸收也会改变影像的辐射特性。
比如,大气中的水汽、尘埃等会使得光线散射,导致影像模糊和亮度变化。
再者,太阳高度角、观测角度等几何因素也会影响地物的辐射接收。
此外,地形的起伏会导致光照不均匀,从而影响影像的辐射值。
辐射校正主要包括两种类型:辐射定标和辐射校正。
辐射定标是将传感器测量的数字量化值(DN 值)转换为具有物理意义的辐射亮度或反射率值。
这通常需要借助传感器的定标参数,如增益、偏移等。
通过定标,可以建立起影像数据与实际辐射量之间的定量关系。
而辐射校正则是消除或减少由大气、地形等因素引起的辐射误差。
常见的辐射校正方法有基于物理模型的校正和基于经验模型的校正。
基于物理模型的校正方法需要详细了解大气的成分、物理特性以及太阳辐射等信息,通过建立复杂的数学模型来计算大气对辐射的影响,并进行校正。
这种方法理论上较为精确,但需要大量的先验知识和参数输入,计算量较大。
基于经验模型的校正方法则是通过对大量已知辐射特性的地面控制点或均匀地物区域的观测,建立影像辐射值与实际辐射值之间的经验关系,然后应用这种关系对整个影像进行校正。
这种方法相对简单,但精度可能受到控制点选取和分布的影响。
在进行辐射校正之后,还需要对遥感影像进行进一步的处理,以提高影像的质量和可用性。
专题4 遥感图像的辐射校正
1.直方图最小值去除法:
原理:在图像中可以找到某种或某几种地物,其辐射亮度或反射率接近0,例如,地形起伏地区山的阴影处,反射率极低的深海水体处等,这时在图像中对应位置的像元亮度值应为0。
实测表明,这些位置上的像元亮度不为零。
这个值就应该是大气散射导致的程辐射度值。
所以直方图最小值的基本原理就是测量出每个波段中的DN值的最小值,即把该值当做程辐射度值,通过波段运算进行修正。
操作方法:
1)首先查看图像的第7波段的DN值统计数据,看最小值是否为0,从而判断还图像有否辐射亮度或反射率接近0的底物。
2)逐个查看波段每个波段的DN值的最小值。
然后进行波段运算,将每个波段的DN值减掉这个DN值得最小值,即把图像修正成改正大气辐射后的图像。
3)得出的数据是每个波段处理后的每个波段的数据文件,然后按照波段顺序进行合成得到辐射校正后的数据。
注:如果图像的第七波段的DN值的最小值不为0,则说明该图像不存在实际反射率接近0的底物,则不能使用该方法进行辐射校正。
实验结果:
原图:(假彩色合成图像)
辐射校正后
图像在现实上差别不会很大,但是数据表示的含义是不相同的。
在图像上右击选择Z profile(spectrum),同一点的数据图对比如下:
Dn=肉(lamuda)*A+B。