第四章 遥感图像的校正
- 格式:ppt
- 大小:6.64 MB
- 文档页数:76
第4讲遥感图像几何校正遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。
几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。
在开始介绍ENVI的几何校正操作之前,首先对ENVI的几何校正几个功能要点做一个说明。
1几何校正方法(1)利用卫星自带地理定位文件进行几何校正对于重返周期短、空间分辨率较低的卫星数据,如A VHRR、MODIS、SeaWiFS等,地面控制点的选择有相当的难度。
这时,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件的影响。
(2) image to image几何校正通过从两幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置(3)image to map几何校正通过地面控制点对遥感图像几何进行平面化的过程。
(4)image to image 自动图像配准根据像元灰度值或者地物特征自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。
(5)image registration workflow流程化工具将具有不同坐标系、不同地理位置的图像配准到同一坐标系下,使图像中相同地理位置包含相同的地物。
2控制点选择方式ENVI提供以下选择方式:∙从栅格图像上选择如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。
∙从矢量数据中选择如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。
∙从文本文件中导入事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。
遥感图像几何精校正实验名称:遥感图像的几何精校正。
实验目的:1.了解和熟悉envi软件的几何校正的原理2.熟悉和掌握envi软件的几何校正的功能和使用方法;3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。
实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达到消减以及消除遥感图像的几何畸变。
多项式几何校正激励实现的两大步:1. 图像坐标的空间变换:有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分布。
为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐标系统的空间装换。
图1:图像几何校正示意图在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元n次多项式,表达式如下:其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2,3, ⋯。
二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应不同坐标系统中的像元坐标。
这是一种多项式数字模拟坐标变换的方法,一旦有了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。
如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何校正成败的关键。
数学上有一套完善的计算方法,核心是通过已知若干存在于不同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出二元n次多项式系数。
不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间坐标的完全配准,是需要考虑和分析的。
何精校正。
几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。
几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几何畸变过程,并利用标准图像和畸变的遥感图像之间的一些对应点(地面控制点数据)确定几个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何让利用畸变模型来校正遥感图像由于几何校正后的影像可以用于提取精却的距离、多边形面积以及方向等信息,同时可以建立遥感提取的信息与地理信息系统(GIS)或空间决策支持系统(SDSS)中其他专题信息之间的联系,所以对遥感数据进行预处理,消除几何畸变是十分重要的。
二、研究方法遥感影像一般存在内部误差和外部误差,识别内外部误差源以及他们是系统误差还是随机误差非常重要。
一般来说,内部误差引起的畸变通常是系统性的、可预测的,外部误差引起的畸变通常是随机的。
系统误差通常比较容易改正,方法简单,而随机误差相对复杂,所以本文主要是讨论随机误差的几何校正。
1,内部误差的产生原因及消除方法内部误差引起的几何畸变主要包括:地球自转引起的偏差、扫描系统引起的标称地面分辨率变化、扫描系统一维高程投影差、扫描系统切向比例畸变。
对于地球自转引起的偏差,通常进行偏差校正,偏差校正就是将影像像幅中的像元向西做系统的位移调整,改正卫星传感器系统的角速度和地表线速度的相互作用。
扫描系统引起的标称地面分辨率变化主要是指亚轨道多光谱扫描系统,由于距星下点越远,地面分辨率就越低,所以大多数科学家主要使用横向扫描数据·幅中央70%的区域(星下点左右各35%)。
在星下点曝光瞬间,垂直航摄相片仅有一个位于飞行器正下方的像主点,这种透视几何关系使得所有高于周围地面的目标地物会出现从像主点向外放射状分布的不同程度的平面维系。
这就产生了扫描系统一维高程投影差。
由于扫描镜匀速旋转,传感器扫描星下点的地理距离要比影像边缘区域的短,这就使垂直于轨道方向的一个轴发生了压缩。
第四章遥感图像处理名词解释假彩色遥感图像:利用卫星或飞机拍摄到的基础遥感图像,将感兴趣的部分(如森林,水体,沙漠,重力异常区等)用不真实且夸张的颜色表示出来,与自然色不一致。
边缘检测:用于判断图像地物的边缘。
数字影像:数字影像是以二维数组形式表示的影像。
该数组由对连续变化的影像作等间隔抽样所产生的采样点组成。
几何校正:几何校正是指将遥感图像参照地形图、已校正图像或GPS控制点进行重采样,消除传感器成像的几何变形,使其具有地理坐标并与地面实际对应。
K-L变换:主成分变换;是建立在统计特征基础上的多维正交线性变换,就是一种离散化的Karhunen -Loeve变换。
辐射校正:对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正直方图均衡:是用一定的算法使直方图大致平和。
问答题下图为一个3x3的图像窗口,试问经过中位数滤波(Median Filter)后,该窗口中心像元的值,并写出计算过程。
(10分)124 126 127120 150 125115 119 123什么是计算机图像处理,它包含那些内容,如何运用计算机图像处理方法来提高遥感图像的解译效果?答:是指利用计算机对图像进行一系列加工,以便获得人们所需要的效果。
常见的图像处理有图像数字化、图像编码、图像增强、图像复原、图像分割与图像分析等。
(1)图像数字化通过取样与量化过程将图像变换成便于计算机处理的数字形式。
通常,图像在计算机内用一个数字矩阵表示,矩阵中的每一个元素称为像素。
将图像数字化的设备有各种扫描仪与数字化仪。
(2)图像编码对图像信息进行编码,可以压缩图像的信息量,以便满足传输与存储的要求。
(3)图像增强使图像清晰或将其转换为更适合人或机器分析的形式。
图像增强并不要求真实地反映原始图像。
(4)图像复原消除或减少在获取图像过程中所产生的某些退化,尽量反映原始图像的真实面貌。
(5)图像分割将图像划分为一些互不重叠的区域。
第四章遥感图像处理目的与要求:熟悉光学遥感图像处理的原理;掌握数字图像处理的工作原理、工作流程;掌握几何校正、辐射校正的原理重点及难点:遥感图像的几何纠正、辐射校正。
教学法:讲授法、演示法教学过程:第一节遥感数字图像的校正一、数字图像及其直方图1 数字图像数字图像:遥感数据有光学图像和数字图像之分。
数字图像是能被计算机存储、处理和使用的用数字表示的图像。
数字化:将连续的图像变化,作等间距的抽样和量化。
通常是以像元的亮度值表示。
数字量和模拟量的本质区别:连续变量,离散变量。
数字图像的表示:矩阵函数2 数字图像直方图数字图像直方图:以每个像元为单位,表示图像中各亮度值或亮度值区间像元出现的频率的分布图。
直方图的作用:直观地了解图像的亮度值分布范围、峰值的位置、均值以及亮度值分布的离散程度。
直方图的曲线可以反映图像的质量差异。
正态分布:反差适中,亮度分布均匀,层次丰富,图像质量高。
偏态分布:图像偏亮或偏暗,层次少,质量较差。
二、辐射校正1、遥感图像的辐射误差主要有三个因素❖传感器的光电变换❖大气的影响❖光照条件2、大气散射校正2.1大气影响的定量分析2.2大气影响的粗略校正通过简单的方法去掉程辐射度(散射光直接进入传感器的那部分),从而改善图像质量。
直方图最小值去除法回归分析法三几何校正1、遥感图像的几何变形有两层含义卫星在运行过程中,由于姿态、地球曲率、地形起伏、地球旋转、大气折射、以及传感器自身性能所引起的几何位置偏差。
图像上像元的坐标与地图坐标系统中相应坐标之间的差异。
2、卫星姿态引起的图像变形3、地形起伏的影响4、地球曲率5、大气折射6、地球自转的影响7、遥感图像几何校正方法几何粗校正:这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正。
几何精校正:利用地面控制点进行的几何校正称为几何精校正。
遥感图像的几何校正原理遥感图像的几何校正是指通过对图像进行空间几何变换,将其投影到地球表面,使得图像中的每一点对应到地球表面上的一个准确位置。
这样做的目的是为了消除图像中由于遥感器在获取图像时的姿态、高度、地球自转等因素造成的图像畸变,并且使得图像能够与地理信息系统中的地图数据进行精确叠加,从而实现对地理空间信息的准确提取和分析。
在遥感图像处理中,几何校正是非常重要的一环,对于后续的遥感信息提取、地图制图和空间分析等应用具有重要的意义。
遥感图像的几何校正原理主要包括以下几个方面:1. 姿态校正:遥感器在获取图像时往往会受到外部因素的影响,导致姿态不稳定,从而引起图像中的位置畸变。
因此,需要对图像进行姿态校正,使得图像中的每一个像素能够按照准确的空间位置进行定位。
姿态校正的主要方法包括使用姿态角信息进行校正、使用GPS/惯导等辅助信息进行姿态测量以及使用地面控制点进行姿态精确校正。
2. 像元定位:在遥感图像中,像元是指图像中的一个最小单元,通常对应于地面上的一个小区域。
在进行几何校正时,需要将图像中的像元与地球表面上的实际位置进行对应,这就需要确定每个像元的准确位置,即像元的定位。
像元定位的主要方法包括使用地面控制点进行像元定位、通过建立像元坐标系系统进行像元定位以及通过地形起伏对像元进行补偿。
3. 系统误差校正:在遥感图像获取过程中,会受到一些系统误差的影响,例如大气、地形或者地面表面的变化等因素会导致图像中的位置畸变。
因此,需要进行系统误差校正,以消除这些系统误差对图像的影响,从而提高图像的精度和准确度。
系统误差校正的主要方法包括对图像进行大气校正、进行地形效应校正以及通过地面控制点进行系统误差校正。
4. 投影变换:在进行几何校正时,需要对图像进行投影变换,将其投影到地球表面上的准确位置。
投影变换的最常用方法是采用地图投影方法,将图像投影到地图数据的坐标系上,从而实现图像与地图数据的叠加和精确对应。
专题4 遥感图像的辐射校正
1.直方图最小值去除法:
原理:在图像中可以找到某种或某几种地物,其辐射亮度或反射率接近0,例如,地形起伏地区山的阴影处,反射率极低的深海水体处等,这时在图像中对应位置的像元亮度值应为0。
实测表明,这些位置上的像元亮度不为零。
这个值就应该是大气散射导致的程辐射度值。
所以直方图最小值的基本原理就是测量出每个波段中的DN值的最小值,即把该值当做程辐射度值,通过波段运算进行修正。
操作方法:
1)首先查看图像的第7波段的DN值统计数据,看最小值是否为0,从而判断还图像有否辐射亮度或反射率接近0的底物。
2)逐个查看波段每个波段的DN值的最小值。
然后进行波段运算,将每个波段的DN值减掉这个DN值得最小值,即把图像修正成改正大气辐射后的图像。
3)得出的数据是每个波段处理后的每个波段的数据文件,然后按照波段顺序进行合成得到辐射校正后的数据。
注:如果图像的第七波段的DN值的最小值不为0,则说明该图像不存在实际反射率接近0的底物,则不能使用该方法进行辐射校正。
实验结果:
原图:(假彩色合成图像)
辐射校正后
图像在现实上差别不会很大,但是数据表示的含义是不相同的。
在图像上右击选择Z profile(spectrum),同一点的数据图对比如下:
Dn=肉(lamuda)*A+B。
遥感图像的几何校正(配准)1.实验目的与任务:(1)理解几何校正的原理;(2)学习使用 ENVI 软件进行几何校正;2.实验设备与数据:设备:遥感图像解决系统 ENVI数据:TM 数据3几何校正的过程:注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配准或几何校正。
1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2 中打开;2.在主菜单上选择map->Registration->select GCPs:image to image3 .出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。
BASE 图像指参考图像而warp 则指待校正影像。
选择OK!4.现在就能够加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就能够选择ADD POINT 添加点了。
(PS:看不清出别忘记放大)如果要放弃该点选择右下脚的delete last point,或者点show point 弹出image to image gcp list 窗口,从中选择你要删除的点,也能够进行其它诸多操作,自己慢慢研究,呵呵。
选好4 个点后就能够预测:把十字叉放在参考影像某个地物,点选predict 则待校正影像就会自动跳转到与参考影像相对应的位置,而后再进行合适的调节并选点。
5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII..固然你没有选完点也能够保存,下次就直接启用就能够:ground control points->file->restore gcps from ASCII...6.接下来就是进行校正了:在ground control points.对话框中选择:options->warp file(as image to map)在出现的imput warp image 中选中你要校正的影像,点ok 进入registration parameters对话框:首先点change proj 按钮,选择坐标系然后更改象素的大小,如果本身就是你所需要大小则不用改了最后选择重采样办法(resampling),普通都是选择双线性的(bilinear),最后的最后选择保存途径就OK 了遥感图像的监督分类1 实验的目的和任务1)理解遥感图像计算机分类的原理和办法;2)掌握监督分类的环节和办法。
遥感图像的几何校正实验报告1.实验目的和内容实验目的:学习如何使用ENVY中Image to Image和Image to Map两种方法对遥感图像进行几何校正,了解掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。
实验内容:(1)Image to Image以一副已经经过几何校正的栅格文件作为基准图,通过从二幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置。
(2)Image to Map通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入,从矢量文件中获取或者从栅格文件中获取。
2.图像处理方法和流程A. Image to Image1、加载影像,打开ENVI,file>>open image file,加载待校正影像与已校正影像。
2、启动几何校正模块Map>>Registration>>Select GCPs:Image to Image,打开几何校正模块。
选择显示base.img文件的Display为基准影像(Base Image),显示uncorrected.img文件的Display为待校正影像(Warp Image)点击OK3、采集地面控制点(1)在两个Display中找到相同区域,在Zoom窗口中,将十字光标定位到相同点上,点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。
(2)当选择一定数量的控制点之后(至少3个),利用自动找点功能。
Ground Control Points Selection窗口>>Options>>Automatically Generate Tie Points,选择一个匹配波段点击OK。
(3)Image to Image GCP List窗口>>Options>Order Points by Error,按照RMS值有高到底排序。
第四章遥感光谱基础和图像校正与增强1. 熟悉颜色立体和色度图,说明什么是光谱色(从红到紫是可见光谱上存在的颜色,每种颜色对应一个波长值,是光谱色),什么是非光谱色。
2. 光的合成怎么推算新颜色,用色度图说明。
(P89)(上课时候说过,玻璃滤片,最后得到。
)3. 加色法和减色法原理有何不同,举例说明什么时候用这两种原理。
(基本概念要了解)(加色法与减色法都是针对色光而言,加色法指的是色光相加,减色法指的是色光被减弱。
加色法与减色法又是迥然不同的两种呈色方法。
加色法是色光混合呈色的方法。
色光混合后,不仅色彩与参加混合的各色光不同,同时亮度也增加了;减色法是色料混合呈色的方法。
色料混合后,不仅形成新的颜色,同时亮度也降低了。
加色法是两种以上的色光同时刺激人的视神经而引起的色效应;而减色法是指从白光或其它复色光中减某些色光而得到另一种色光刺激的色效应。
从互补关系来看,有三对互补色:R-C;G-M;B-Y。
在色光加色法中,互补色相加得到白色;在色料减色法中,互补色相加得到黑色。
色光三原色是红(R)、绿(G)、蓝(B),色料三原色是青(C)、品红(M)、黄(Y)。
人眼看到的永远是色光,色料三原色的确定与三原色光有着必然的联系。
)4. 在遥感影像生成过程中,真彩色片(真彩色是指在组成一幅彩色图像的每个像素值中,有R,G,B三个基色分量,每个基色分量直接决定显示设备的基色强度,这样产生的彩色称为真彩色)、伪彩色片(伪彩色图像的含义是,每个像素的颜色不是由每个基色分量的数值直接决定,而是把像素值当作彩色查找表(color look-up table,CLUT)的表项入口地址,去查找一个显示图像时使用的R,G,B强度值,用查找出的R,G,B强度值产生的彩色称为伪彩色)、假彩色(遥感影像采用截止滤光技术、假彩色胶片摄影或经彩色合成后形成颜色,它并非该物体的天然颜色。
如绿色植物变成了红色)片有什么不同?5. 熟悉摄影正片和负片的生成原理,熟悉彩色、红外影像的生成原理,并与摄影片生成过程比较异同。
浅谈遥感图像的几何校正摘要遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。
ERDAS IMAGINE是一款遥感图像处理系统软件。
遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。
关键词:遥感,erdas imagine,几何纠正1.前言遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。
具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。
遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。
遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。
ERDAS IMAGINE是一款遥感图像处理系统软件。
ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。
它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。
遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。
因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。
遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。