第四章__遥感图像处理
- 格式:doc
- 大小:38.00 KB
- 文档页数:9
第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。
数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。
模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。
2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。
2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。
1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。
图像显示:为了理解数字图像中的内容,或对处理结果进行对比。
图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。
2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。
注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。
3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。
包括图像分割、分类等。
图像分割:用于从背景中分割出感兴趣的地物目标。
分割的结果可作为监督分类的训练区。
图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。
3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。
4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。
遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。
第四章遥感图像数字处理的基础知识C方向 20 卢昕一、名词解释1.光学影像:一种以胶片或其他的光学成像载体的形式记录的图像。
它是一个二维的连续的光密度函数。
2.数字影像:以数字形式进行存储的图像,它是一个二维的离散的光密度函数。
3.空间域图像:用空间坐标x,y的函数表示的形式。
有光学影像和数字影像。
4.频率域图像:以频率域的形式表示的影像,频率坐标Vx,Vy的函数。
5.图像采样:图像空间坐标(x,y)的数字化称为图像采样。
6.灰度量化:图像灰度的数字化称为图像量化。
7 .ERDAS:是美国 ERDAS 公司开发的遥感图像处理系统。
它以模块化的方式提供给用户,可使用户根据自己的应用要求、资金情况合理的选择不同功能模块及不同组合,对系统进行剪裁,充分利用软硬件资源,并最大限度地满足用户的专业应用要求。
ERDAS Imagine面向不同需求的用户,对于系统的扩展功能采用开放的体系结构以Imagine Essentials、Imagine Advantage、Imagine Professional的形式为用户提供低、中、高三档产品架构,并有丰富的功能扩展模块供用户选择,产品模块的组合比较灵活。
8.BSQ:遥感数字图像的一种存储格式,即按波段记载数据文件。
9.BIL:也是遥感数字图像的一种存储格式,是一种按照波段顺序交叉排列的遥感数据格式。
二、简答题1、叙述光学影像与数字影像的关系和不同点。
答:光学图像可以看成一个二维的连续的光密度函数,像片上的密度随空间坐标的变化而变化。
而数字图像是一个二维的离散的光密度函数。
光学图像可以通过采样和量化得到数字图像,数字图像可以通过显示终端设备或照相或打印的方式得到光学图像。
与光学图像相比数字图像的处理简捷快速,并可以完成一些光学处理方法所无法完成的各种特殊处理等。
2、怎样才能将光学影像变成数字影像?答:将光学影像变成数字影像要经过采样和量化两步。
采样是将图像空间的坐标(X,Y)进行数字化,此时实现了空间的离散化。
第四章遥感图像处理名词解释假彩色遥感图像:利用卫星或飞机拍摄到的基础遥感图像,将感兴趣的部分(如森林,水体,沙漠,重力异常区等)用不真实且夸张的颜色表示出来,与自然色不一致。
边缘检测:用于判断图像地物的边缘。
数字影像:数字影像是以二维数组形式表示的影像。
该数组由对连续变化的影像作等间隔抽样所产生的采样点组成。
几何校正:几何校正是指将遥感图像参照地形图、已校正图像或GPS控制点进行重采样,消除传感器成像的几何变形,使其具有地理坐标并与地面实际对应。
K-L变换:主成分变换;是建立在统计特征基础上的多维正交线性变换,就是一种离散化的Karhunen -Loeve变换。
辐射校正:对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正直方图均衡:是用一定的算法使直方图大致平和。
问答题下图为一个3x3的图像窗口,试问经过中位数滤波(Median Filter)后,该窗口中心像元的值,并写出计算过程。
(10分)124 126 127120 150 125115 119 123什么是计算机图像处理,它包含那些内容,如何运用计算机图像处理方法来提高遥感图像的解译效果?答:是指利用计算机对图像进行一系列加工,以便获得人们所需要的效果。
常见的图像处理有图像数字化、图像编码、图像增强、图像复原、图像分割与图像分析等。
(1)图像数字化通过取样与量化过程将图像变换成便于计算机处理的数字形式。
通常,图像在计算机内用一个数字矩阵表示,矩阵中的每一个元素称为像素。
将图像数字化的设备有各种扫描仪与数字化仪。
(2)图像编码对图像信息进行编码,可以压缩图像的信息量,以便满足传输与存储的要求。
(3)图像增强使图像清晰或将其转换为更适合人或机器分析的形式。
图像增强并不要求真实地反映原始图像。
(4)图像复原消除或减少在获取图像过程中所产生的某些退化,尽量反映原始图像的真实面貌。
(5)图像分割将图像划分为一些互不重叠的区域。
第四章遥感图像处理目的与要求:熟悉光学遥感图像处理的原理;掌握数字图像处理的工作原理、工作流程;掌握几何校正、辐射校正的原理重点及难点:遥感图像的几何纠正、辐射校正。
教学法:讲授法、演示法教学过程:第一节遥感数字图像的校正一、数字图像及其直方图1 数字图像数字图像:遥感数据有光学图像和数字图像之分。
数字图像是能被计算机存储、处理和使用的用数字表示的图像。
数字化:将连续的图像变化,作等间距的抽样和量化。
通常是以像元的亮度值表示。
数字量和模拟量的本质区别:连续变量,离散变量。
数字图像的表示:矩阵函数2 数字图像直方图数字图像直方图:以每个像元为单位,表示图像中各亮度值或亮度值区间像元出现的频率的分布图。
直方图的作用:直观地了解图像的亮度值分布范围、峰值的位置、均值以及亮度值分布的离散程度。
直方图的曲线可以反映图像的质量差异。
正态分布:反差适中,亮度分布均匀,层次丰富,图像质量高。
偏态分布:图像偏亮或偏暗,层次少,质量较差。
二、辐射校正1、遥感图像的辐射误差主要有三个因素❖传感器的光电变换❖大气的影响❖光照条件2、大气散射校正2.1大气影响的定量分析2.2大气影响的粗略校正通过简单的方法去掉程辐射度(散射光直接进入传感器的那部分),从而改善图像质量。
直方图最小值去除法回归分析法三几何校正1、遥感图像的几何变形有两层含义卫星在运行过程中,由于姿态、地球曲率、地形起伏、地球旋转、大气折射、以及传感器自身性能所引起的几何位置偏差。
图像上像元的坐标与地图坐标系统中相应坐标之间的差异。
2、卫星姿态引起的图像变形3、地形起伏的影响4、地球曲率5、大气折射6、地球自转的影响7、遥感图像几何校正方法几何粗校正:这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正。
几何精校正:利用地面控制点进行的几何校正称为几何精校正。
遥感图像处理原理
遥感图像处理原理是利用遥感技术获取的遥感图像进行数字化和分析处理的过程。
遥感图像处理原理可以大致分为以下几个步骤。
1. 图像获取:首先需要通过遥感卫星、航空摄影等方式获取遥感图像。
这些图像会以数字形式储存,其中每个像素点都有其对应的数值。
2. 辐射校正:由于遥感图像受到大气、地表反射等因素的影响,图像中的像素值并不完全准确反映地物的特征。
因此,需要对图像进行辐射校正,消除光谱值的影响,以准确获取地物信息。
3. 影像配准:不同时间、不同传感器获取的图像可能存在光谱、几何畸变等差异。
为了对比不同图像或图像的不同区域,需要进行影像配准,将它们对齐到相同的坐标系。
4. 图像增强:图像增强是为了提高图像的可见性和解释能力。
常见的图像增强方法包括直方图均衡化、滤波、锐化等,以突出地物的特征,便于进行后续的分析和解译。
5. 特征提取:特征提取是指从遥感图像中提取出可用于分析和解译的信息。
例如,可以提取出不同光谱波段的亮度、纹理、形状等特征,用于进行不同地物类型的分类和识别。
6. 图像分类和解译:根据提取的特征,可以使用机器学习、人工智能等方法对图像进行分类和解译。
这些方法可以自动或半
自动地对图像中的地物进行识别和标注。
7. 结果分析和应用:最后,分析师可以对分类和解译结果进行验证和分析。
这些结果可以应用于资源管理、环境保护、城市规划等领域,为决策提供可靠的支持。
通过上述步骤,遥感图像处理原理可以有效地从遥感图像中提取出有用的地物信息,为地理研究和资源管理等工作提供数据支持。
无人机遥感影像处理技术手册第一章:引言无人机遥感影像处理技术手册是为了提供无人机遥感影像处理的相关指导和技术支持而编写的。
本手册旨在为使用无人机遥感影像处理技术的用户提供全面而详细的信息,帮助他们理解和运用该技术的方法和工具。
第二章:无人机遥感影像获取2.1 无人机遥感影像获取概述无人机遥感影像获取是指使用无人机平台携带设备,通过航拍和遥感技术获取地面影像信息的过程。
该过程需要考虑无人机的飞行计划、飞行高度、相机配置以及数据采集等因素。
2.2 无人机遥感影像获取步骤无人机遥感影像获取的步骤包括:飞行计划设计、无人机起飞、影像采集和数据传输等。
在飞行计划设计阶段,需要根据应用需求确定飞行区域和航线规划。
之后,无人机起飞并按照设定的航线进行影像采集。
最后,通过数据传输将采集到的影像数据传送到地面设备进行处理。
第三章:无人机遥感影像处理3.1 无人机遥感影像处理概述无人机遥感影像处理是指对无人机采集到的影像数据进行预处理、特征提取、分类和后处理等步骤,以获得地面目标的相关信息。
该过程需要使用一系列的遥感影像处理软件和算法。
3.2 无人机遥感影像处理步骤无人机遥感影像处理的步骤包括:预处理、特征提取、分类和后处理等。
预处理阶段主要包括影像去噪、几何校正、辐射校正等。
特征提取阶段通过图像处理算法提取地面目标的特征信息。
分类阶段将提取到的特征进行分类,以实现地物分类和目标检测。
最后,通过后处理将分类结果进行优化和修正。
第四章:无人机遥感影像处理工具4.1 主流无人机遥感影像处理工具介绍主流的无人机遥感影像处理工具包括ENVI、ArcGIS、Pix4Dmapper 等。
这些工具提供了丰富的功能和算法,能够满足各种遥感影像处理需求。
4.2 无人机遥感影像处理工具的使用方法无人机遥感影像处理工具的使用需要掌握软件的操作界面、功能模块和相关算法。
用户可以通过学习相关文档和培训课程来提高使用技能,并根据具体需求选择合适的工具和算法。
第四章遥感图像处理授课科目:遥感原理与方法授课内容:遥感图像处理授课对象:地信专业授课时数:2学时授课地点:成信航空港校区授课时间:教案作者:仙巍目的与要求:熟悉光学遥感图像处理的原理;掌握数字图像处理的工作原理、工作流程;掌握几何校正、辐射校正的原理重点及难点:遥感图像的几何纠正、辐射校正。
教学法:讲授法、演示法教学过程:第一节遥感数字图像的校正一、数字图像及其直方图1 数字图像数字图像:遥感数据有光学图像和数字图像之分。
数字图像是能被计算机存储、处理和使用的用数字表示的图像。
数字化:将连续的图像变化,作等间距的抽样和量化。
通常是以像元的亮度值表示。
数字量和模拟量的本质区别:连续变量,离散变量。
数字图像的表示:矩阵函数2 数字图像直方图数字图像直方图:以每个像元为单位,表示图像中各亮度值或亮度值区间像元出现的频率的分布图。
直方图的作用:直观地了解图像的亮度值分布范围、峰值的位置、均值以及亮度值分布的离散程度。
直方图的曲线可以反映图像的质量差异。
正态分布:反差适中,亮度分布均匀,层次丰富,图像质量高。
偏态分布:图像偏亮或偏暗,层次少,质量较差。
二、辐射校正1、遥感图像的辐射误差主要有三个因素传感器的光电变换大气的影响光照条件2、大气散射校正2.1大气影响的定量分析2.2大气影响的粗略校正通过简单的方法去掉程辐射度(散射光直接进入传感器的那部分),从而改善图像质量。
直方图最小值去除法回归分析法三几何校正1、遥感图像的几何变形有两层含义卫星在运行过程中,由于姿态、地球曲率、地形起伏、地球旋转、大气折射、以及传感器自身性能所引起的几何位置偏差。
图像上像元的坐标与地图坐标系统中相应坐标之间的差异。
2、卫星姿态引起的图像变形3、地形起伏的影响4、地球曲率5、大气折射6、地球自转的影响7、遥感图像几何校正方法几何粗校正:这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正。
几何精校正:利用地面控制点进行的几何校正称为几何精校正。
2.1、基本思路:把存在几何畸变的图像,纠正成符合某种地图投影的图像,且要找到新图像中每一像元的亮度值。
2.2、具体步骤步骤一:选取控制点(1)地面控制点在图像上有明显的、清晰的定位识别标志,如道路交叉点、河流叉口、建筑边界等。
(2)地面控制点上的地物不随时间而变化地面控制点应当均匀地分布在整幅图像内,且要有一定的数量保证。
地面控制点的数量、分布和精度直接影响几何纠正的效果。
步骤二:数据的空间变换(1)二元多项式近似的基本原理设两幅图像坐标系统间几何畸变关系可描述为:x’=h1(x,y) y’=h2(x,y)在未知情况下, h1(x,y)和h2(x,y)可用二元多项式来近似(2)空间坐标的计算问题向前映射法(直接法)向后映射法(间接法)两种映射方法的对比对于向前映射:每个输出象素的灰度要经过多次运算;对于向后映射:每个输出象素的灰度只要经过一次运算。
步骤三:像元灰度插值插值方法(1)最近邻插值在待求像素的四个邻近像素中,输出象素的灰度等于离它所映射位置最近的输入象素的灰度值。
(2)双线性插值利用待求像素四个邻近像素的灰度在两个方向作线性内插;问题描述:单位正方形顶点已知,求正方形内任一点的f(x,y)值。
假设f(0,0)=2,f(1,0)=3,f(0,1)=1,f(1,1)=4则 f(x,y)=x-y+2xy+2对(i,j+v),f(i,j)到f(i,j+1)的灰度变化为线性关系,有f(i,j+v)=[f(i,j+1)-f(i,j)]v+f(i,j)同理,对(i+1,j+v)有f(i+1,j+v)=[f(i+1,j+1)-f(i+1,j)]v+f(i+1,j)从f(i,j+v)到f(i+1,j+v)的灰度变化也为线性关系待求像素(任一点像素)的计算式为双线性插值需要得到四个未知参数——利用四个已知点双线性插值特点计算中较为充分的考虑相邻各点的特征,具有灰度平滑过渡特点一般情况下可得到满意结果具有低通滤波特性,使图像轮廓模糊平滑作用使图像细节退化,尤其在放大时不连续性会产生不希望的结果(3)三次内插法(高阶插值)利用待插值点周围的16个邻点像素值三次内插法算法特点可使待求点的灰度值范围更好的模拟实际可能值可取得更好的视觉效果三次内插法突出的优点是高频信息损失少,可将噪声平滑计算量大为增加2.3、内插方法的选择内插方法的选择除了考虑图像的显示要求及计算量,还要考虑内插结果对分类的影响当纹理信息为主要信息时,最邻近采样将严重改变原图像的纹理信息但当灰度信息为主要信息时,双线性内插及三次内插法将减少图像异质性,增加图像同质性,其中,双线性内插方法使这种变化更为明显四遥感数据的镶嵌处理数字影像镶嵌是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。
在遥感应用中,影像镶嵌有着重要的应用。
数字影像镶嵌原理:影像镶嵌的原理是:如何将多幅影像从几何上拼接起来,这一步通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。
第二节遥感数字图像的增强处理目的:采用一系列技术去改善图图象保真象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。
图象增强并不以为准则,而是有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。
方法:空间域处理全局运算:在整个图象空间域进行。
局部运算:在与象素有关的空间域进行。
点运算:对图象作逐点运算。
频域处理在图象的Fourier变换域上进行处理。
一、辐射增强1.线性变换假定原图像f(i, j)的灰度范围为[a, b],希望变换后图像g(i, j)的灰度范围扩展至[a´,b´]2. 非线性灰度变换(1)对数变换低灰度区扩展,高灰度区压缩。
(2)指数变换高灰度区扩展,低灰度区压缩。
3、直方图均衡•直方图均衡化技术要点:–公理:直方图p(r k )为常数的图像对比度最好–目标:寻找一个灰度级变换T(r),使结果图像的直方图p(s k )为一个常数4.直方图匹配修改一幅图象的直方图,使得它与另一幅图象的直方图匹配或具有一种预先规定的函数形状。
目标:突出我们感兴趣的灰度范围,使图象质量改善。
二、空间增强•目的:突出图像的整体特征或有目的的去除某些特征•处理结果:可能与原图像差异较大•处理方法:邻域处理(局部处理)–在对图像进行处理时,某一像元处理后的值g(i,j)由处理前该像元f(i,j)的小邻域N(i,j)中的像元值确定1 .图像平滑•(1)均值平滑•(2)中值滤波•中值滤波就是用一个奇数点的移动窗口,将窗口内的数值按从小到大进行排序,把窗口中心点的值用窗口内各点的中值代替。
•假设窗口内有五点,其值为80、 90、 200、 110和120,那么此窗口内各点的中值即为110。
2. 图像锐化•图象经转换或传输后,质量可能下降,难免有些模糊。
•图象锐化目的:加强图象轮廓,使图象看起来比较清晰。
三、频率域增强1、低通滤波•频域低通过滤的基本思想G(u,v) = F(u,v)H(u,v)–F(u,v)是需要平滑图像的傅立叶变换形式–H(u,v)是选取的一个过滤器变换函数–G(u,v)是通过H(u,v)减少F(u,v)的高频部分,来得到的结果–运用傅立叶逆变换得到平滑后的图像2、高通滤波•频域高通过滤的基本思想–G(u,v)=F(u,v)H(u,v)–F(u,v)是需要锐化图像的傅立叶变换形式。
–目标是选取一个过滤器变换函数H(u,v),通过它减少F(u,v)的低频部分来得到G(u,v)。
–运用傅立叶逆变换得到锐化后的图像。
四、彩色增强1、伪彩色处理:–把黑白图象处理成伪彩色图象。
–密度分割是伪彩色处理技术中最简单的一种。
2 假彩色增强•把真实的自然彩色图象或遥感多光谱图象处理成假彩色图象。
•用途:–(1)景物映射成奇异彩色,比本色更引人注目。
–(2)适应人眼对颜色的灵敏度,提高鉴别能力。
–(3)遥感多光谱图象处理成假彩色,以获得更多信息。
五、图像运算•概念:两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息或去掉某些不必要信息的目的。
•原理:地物不同波段的光谱差异。
●差值运算:两幅同样行、列数的图像,对应像元的亮度值相减就是差值运算。
●比值运算:两幅同样行、列数的图像,对应像元的亮度值相除(除数不为0)就是比值运算。
六、多光谱变换✓多光谱变换:针对多光谱影象存在的一定程度上的相关性以及数据冗余现象,通过函数变换,达到保留主要信息,降低数据量,增强或提取有用信息目的的方法。
✓其变换的本质:对遥感图像实行线性变换,使光谱空间的坐标按一定规律进行旋转。
1、K-L变换•离散变换的简称,又称主成分变换。
它是对某一多光谱图像X.利用K-L变换矩阵A进行线性组合,而产生一组新的多光谱图像Y.•K-L变换的特点:变换后的主分量空间与变换前的多光谱空间坐标系相比旋转了一个角度。
新坐标系的坐标轴一定指向数据量较大的方向。
•目的:实现数据压缩和图像增强。
2、K-T变换•K-T变换也称缨帽变换.是一种坐标空间发生旋转的线性变换,旋转后的坐标轴指向与地面景物有密切关系的方向•K-T变换的应用:主要针对TM图像数据和MSS数据.对于扩大陆地卫星TM影像数据分析在农业方面的应用有重要意义.五、多源信息复合1、遥感数据之间的融合:(1)不同传感器数据的复合:配准、复合(3种方法)(2)不同时相数据的复合:配准、直方图调整、复合(彩色合成、差值、比值) 2、遥感数据与非遥感数据的复合网格数据生成、遥感数据选取、配准复合(栅格与栅格、栅格与矢量、综合分类分析)§2 常用遥感图像处理软件目前国内常用的遥感图像处理软件有:•Erdas:美国亚特兰大ERDAS公司集遥感和GIS于一身的软件。
•Envi:美国Better Solutions Consulting 有限公司开发的遥感图像处理软件。
•PCI:加拿大PCI公司的产品,处理遥感图像。
第三节光学原理与光学处理颜色视觉加色法与减色法光学增强处理一、颜色视觉1、亮度对比和颜色对比(1)亮度对比:对象相对于背景的的明亮程度。
改变对比度,可以提高图象的视觉效果。
(2)颜色对比:在视场中,相邻区域的不同颜色的相互影响叫做颜色对比。
两种颜色相互影响的结果,使每种颜色会向其影响色的补色变化。
在两种颜色的边界,对比现象更为明显。
因此,颜色的对比会产生不同的视觉效果。
2、颜色的性质:所有颜色都是对某段波长有选择地反射而对其他波长吸收的结果。