SACS操作流程—静力部分
- 格式:doc
- 大小:358.00 KB
- 文档页数:11
SACS 操作流程静力部分建模流程简叙.1启动程序启动SACS 5.2 Executive程序,出现如下主界面:点击左下角的“Directory”选项卡,在“CURRENT DRIVE”中选择文件所在的硬盘盘符;在CURRENT DIRECTORY 窗口中选择文件存储目录。
CURRENT DIRECTORY窗口CURRENT DRIVE 选项框双击“INTERACTIVE”窗口中的“MOEL”按纽,出现如下界面:选择“Create new model”,点击“OK”按纽确认。
出现如下界面:中选择“JACKET “(导管架)类型,使用向导建模。
根据向导出现的界面,依次输入以下数据:根据以上步骤,已建立了导管架的主框架,见下图,我们可以根据设计图纸或设计思路,接下来建更详细的模型。
灵活的运用向导可以节省建模的时间。
尤其是对于有斜度的导管架、塔等采用向导建模会相对简单些,且不容易出错。
通用的建模规则.1点的建立2.1.1点坐标系的定义一般以平台轴线围成的四边形的中心作为原点;X轴:平台北向为X轴正向;Y轴:平台东向为Y轴正向;Z轴:垂直水面向上为Z轴正向,零点为海图面;2.1.2 点的命名一个平台整个模型包括有很多模块,大概有成千上万个点构成,为方便建模(模型的导入等)及校对,有序的点编号将使模型变得有条理,便于管理。
根据以往设计的经验对整个平台每个模块结构上的点的命名进行了规范。
导管架点的命名规则以下我们以四条腿的导管架举例来说明导管架点的命名方法:1、导管架腿上的点命名以xxxL(L代表leg),第一个x为其导管架的层数。
后两个根据实际需要编号;2、每层平面内点的命名以Hxxx(H代表HORIZONTAL),第一个x为层数。
后两个xx根据实际需要编号;3、对立面上x支撑的交点的命名以Xxxx(x代表x-brace)第一个x跟第二个x代表上下两层的层数,第三个x根据实际情况编号;●上部组块点的命名规则以下我们以四条腿的上部组块举例来说明上部组块点的命名方法:1、上部组块上的点命名以A(B/C/D..)xxx(L代表leg),第一个字母表示层数,第一层为A开头,第二层为B开头依次类推,第二、三不用字母,均使用数字编号,如果表示的点是在腿上,则最后一个数字用L表示。
sacs使用手册SACS(Structural Analysis Computer System)是一种用于结构分析和设计的计算机软件。
以下是一份简要的SACS使用手册,以帮助您更好地使用该软件:1. 概述SACS提供了一套强大的工具,用于模拟和评估各种结构的行为。
通过本手册,您将了解SACS的主要功能和使用方法。
2. 系统要求在开始使用SACS之前,请确保您的计算机系统符合以下最低要求:操作系统:Windows 10或更高版本处理器:英特尔酷睿i5或更高级别内存:8GB或更高硬盘空间:至少50GB可用空间3. 软件安装与启动下载并安装SACS软件。
打开SACS软件,进入初始界面。
4. 文件操作新建项目:点击“文件”->“新建”->选择项目类型->填写项目信息->点击“确定”。
打开项目:点击“文件”->“打开”->选择项目文件->点击“打开”。
保存项目:点击“文件”->“保存”->选择保存位置和文件名->点击“保存”。
5. 工具栏操作点击工具栏上的按钮,选择相应的工具进行操作。
可通过右键菜单自定义工具栏。
6. 结构建模与参数设置使用绘图工具在界面上绘制结构模型。
在属性面板中设置结构参数,如材料、截面尺寸等。
7. 模拟分析选择模拟类型(如静力分析、动力分析等)。
设置模拟参数,如边界条件、载荷等。
点击“开始模拟”按钮,进行模拟分析。
8. 结果查看与导出在结果面板中查看模拟结果,如应力、应变等。
可将结果导出为Excel或其他格式,方便进一步处理和分析。
9. 帮助与技术支持可通过SACS的帮助文档获取更多使用说明和教程。
如遇到问题,可联系SACS技术支持获取帮助。
10. 软件更新与维护建议定期检查软件更新,以确保获得最新的功能和修复已知问题。
可通过SACS的维护工具进行软件清理和修复。
以上是SACS使用手册的简要介绍,具体操作请参考官方文档或联系技术支持获取更详细的指导。
结构静力试验工艺流程英文回答:Structural static testing is a crucial process in engineering that involves subjecting a structure to various loads to assess its strength, stability, and performance. It is essential for ensuring the safety and reliability of structures such as bridges, buildings, and aircraft.The process of structural static testing typically involves the following steps:1. Planning and preparation: This stage involves identifying the objectives of the test, determining thetest parameters, and selecting the appropriate testing equipment and instrumentation. It also includes preparing the structure for testing by installing load cells, strain gauges, and displacement transducers.For example, when testing a bridge, the planning stagewould involve determining the maximum load the bridge needs to withstand and selecting the appropriate load cells and strain gauges to measure the structural response.2. Load application: In this stage, the structure is subjected to various loads, such as dead loads, live loads, wind loads, or seismic loads. These loads are carefully applied to the structure using hydraulic actuators, jacks, or weights.For instance, when testing a building, the load application stage would involve applying simulated wind loads by using hydraulic actuators to generate wind pressure on the building's facade.3. Data collection: During the test, data is collected from the instrumentation installed on the structure. This data includes measurements of strain, displacement, and load. It is crucial to collect accurate and reliable data to analyze the structural behavior.For example, strain gauges installed on a wing duringan aircraft static test would measure the strainexperienced by the wing under different load conditions.4. Analysis and evaluation: Once the test is completed, the collected data is analyzed to assess the structural performance. This analysis involves comparing the measured responses with the predicted responses and evaluating the structure's behavior under different load conditions.For instance, in the analysis stage of testing a bridge, the measured deflections and strains are compared with the predicted values to determine if the bridge meets the required design criteria.5. Reporting and documentation: Finally, a comprehensive report is prepared, documenting the test procedures, results, and conclusions. This report serves as a reference for engineers, architects, and other stakeholders involved in the design and construction of the structure.For example, a report on the structural static testingof a high-rise building would provide detailed information on the building's response to various loads and recommendations for design improvements.中文回答:结构静力试验是工程领域中一项关键的工艺流程,它通过对结构施加各种载荷来评估其强度、稳定性和性能。
施迈茨真空炉操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!施迈茨真空炉操作流程一、准备工作阶段在进行施迈茨真空炉的操作之前,需要做好一系列的准备工作。
结构静力试验工艺流程英文回答:Structural static testing is a crucial process in engineering and construction. It involves subjecting a structure to various loads and forces to assess its strength, stability, and performance. The testing process is essential to ensure that the structure meets safety requirements and can withstand the expected loads and environmental conditions.The process of structural static testing typically follows a specific workflow to ensure accurate and reliable results. Here is a step-by-step breakdown of the process:1. Test Planning: The first step is to define the objectives of the test and determine the specific loads and forces that the structure will be subjected to. This includes considering factors such as wind loads, seismic loads, and live loads. The testing plan also includesselecting the appropriate testing equipment and instrumentation.2. Test Setup: Once the testing plan is in place, the next step is to set up the test apparatus and instrumentation. This involves installing sensors, strain gauges, accelerometers, and other measuring devices at strategic locations on the structure. The test setup also includes ensuring that the structure is securely anchored and supported to prevent any unintended movements or failures during the test.3. Load Application: With the test setup complete, the next step is to apply the predetermined loads and forces to the structure. This can be done using hydraulic actuators, weights, or other specialized equipment. The loads are applied gradually and in a controlled manner to observe the response of the structure under different loading conditions.4. Data Acquisition: As the loads are applied, data is continuously collected from the sensors and measuringdevices installed on the structure. This data includes strain, displacement, vibration, and other relevant parameters. The data acquisition system records and analyzes the data in real-time to monitor the behavior and performance of the structure.5. Analysis and Interpretation: Once the test is complete, the collected data is analyzed and interpreted to evaluate the structural performance. This includes comparing the measured responses with the predicted behavior based on analytical models or design calculations. The analysis helps identify any weaknesses, deformations, or failures in the structure and assess its overall safety and reliability.6. Reporting and Documentation: The final step is to prepare a comprehensive report documenting the test procedures, results, and conclusions. The report includes detailed descriptions of the test setup, load applications, data acquisition, and analysis. It also provides recommendations for any necessary design modifications or improvements based on the test findings.Structural static testing is a critical process that ensures the safety and reliability of structures. By following a systematic workflow and carefully analyzing the test results, engineers can make informed decisions regarding the design and construction of structures.中文回答:结构静力试验是工程和建筑领域中的一个重要过程。
结构静力试验工艺流程英文回答:Structural static testing is a process used to evaluate the strength and stability of a structure under various loads and conditions. It involves subjecting the structure to controlled forces and measuring its response to determine its structural integrity and performance.The process typically starts with the preparation of the test specimen, which involves selecting a representative section of the structure and ensuring it is properly cleaned and prepared for testing. This may include removing any surface coatings or contaminants that could affect the test results.Next, the specimen is mounted onto a testing rig or frame, which allows for the application of forces and measurement of the structural response. The rig is designed to simulate the expected loading conditions and can beadjusted to apply different types and magnitudes of forces.Once the specimen is mounted, the testing procedure begins. This usually involves applying a series of incremental loads to the structure and measuring its response at each load level. The response is typically measured using sensors and instruments that record displacement, strain, and other relevant parameters.During the testing process, it is important to monitor the structural behavior and ensure that it remains within acceptable limits. This may involve visual inspections,real-time data analysis, and adjustments to the testing parameters if necessary.After the testing is complete, the data collected is analyzed to assess the structural performance. This includes evaluating the load-displacement curves, stress-strain relationships, and any other relevant data to determine the strength, stiffness, and stability of the structure.Based on the test results, conclusions can be drawn regarding the structural integrity and performance. If the structure meets the required criteria, it can be deemed safe and suitable for its intended use. On the other hand, if any deficiencies or failures are observed, further analysis and modifications may be necessary to improve the structure's performance.中文回答:结构静力试验工艺流程是用于评估结构在不同荷载和条件下的强度和稳定性的过程。
SACS 操作流程
静力部分
建模流程简叙
.1启动程序
启动SACS 5.2 Executive程序,出现如下主界面:
点击左下角的“Directory”选项卡,在“CURRENT DRIVE”中选择文件所在的硬盘盘符;在CURRENT DIRECTORY 窗口中选择文件存储目录。
CURRENT DIRECTORY窗口
CURRENT DRIVE 选项框
双击“INTERACTIVE”窗口中的“MOEL”按纽,出现如下界面:
选择“Create new model”,点击“OK”按纽确认。
出现如下界面:
在“TITLE”文本输入框中输入项目名称“SACS EXAMPLE PROJECT”,在“STRUCTURE WIZARD”中选择“JACKET “(导管架)类型,使用向导建模。
根据向导出现的界面,依次输入以下数据:
根据以上步骤,已建立了导管架的主框架,见下图,我们可以根据设计图纸或设计思路,接下
来建更详细的模型。
灵活的运用向导可以节省建模的时间。
尤其是对于有斜度的导管架、塔等采用向导建模会相对简单些,且不容易出错。
通用的建模规则
.1点的建立
2.1.1点坐标系的定义
一般以平台轴线围成的四边形的中心作为原点;
X轴:平台北向为X轴正向;
Y轴:平台东向为Y轴正向;
Z轴:垂直水面向上为Z轴正向,零点为海图面;
2.1.2 点的命名
一个平台整个模型包括有很多模块,大概有成千上万个点构成,为方便建模(模型的导入等)及校对,有序的点编号将使模型变得有条理,便于管理。
根据以往设计的经验对整个平台每个模块结构上的点的命名进行了规范。
●导管架点的命名规则
以下我们以四条腿的导管架举例来说明导管架点的命名方法:
1、导管架腿上的点命名以xxxL(L代表leg),第一个x为其导管架的层数。
后
两个根据实际需要编号;
2、每层平面内点的命名以Hxxx(H代表HORIZONTAL),第一个x为层数。
后两个xx根据实际需要编号;
3、对立面上x支撑的交点的命名以Xxxx(x代表x-brace)第一个x跟第二
个x代表上下两层的层数,第三个x根据实际情况编号;
●上部组块点的命名规则
以下我们以四条腿的上部组块举例来说明上部组块点的命名方法:
1、上部组块上的点命名以A(B/C/D..)xxx(L代表leg),第一个字母表示层数,
第一层为A开头,第二层为B开头依次类推,第二、三不用字母,均使用数字
编号,如果表示的点是在腿上,则最后一个数字用L表示。
●生活楼点的命名规则
生活楼上的点命名以Lxxx(L代表living quarter),第二个字母表示层数,第一
层为1开头,第二层为2开头依次类推,第二、三根据需要编号。
●火炬臂点的命名规则
火炬臂上点命名以FBxx(FB代表FLARE BOOM),第三个x与第四个x根据需
要进行编号。
●靠船帮的命名规则
靠船帮上点命名以BBxx(BB代表BARGEBUMP),第三个x与第四个x根据需
要进行编号。
●登船件的命名规则
登船件上点命名以BLxx(BL代表BOATLANDING),第三个x与第四个x根据
需要进行编号。
2.1.3 点的自由度
对点,Sacs 程序中“1”表示约束,如111000表示简支。
●主结构上的点均设计成刚性节点(默认为刚节点);
●对导管架泥线处与桩相连接的点设计成PILEHD;
●如果对上部模块或者生活楼单独分析时,支点一般设计成简支;
●当进行吊装分析时,吊点一般为固结(111111);
●进行动态分析时,需将定义主节点自由度:(222000);
.2杆件的建立
根据建立的点,用sacs 程序菜单中的member/add即可以添加杆件。
当然这只是最基础的一步。
接下来要对杆件属性进行赋值。
2.2.1 杆件的命名规则
杆件的命名一般是通过杆件的组来区分,通过先定义截面来定义组,一个组里可能
包括几个不同的截面。
●导管架杆件的命名规则
以下我们以四条腿的导管架举例来说明导管架点的命名方法:
1、导管架腿上杆件的命名以Lxx(L代表leg),第一个x为其导管架的层数相对
应;
2、每层水平杆件的命名以Hxx(H代表HORIZONTAL),第一个x为层数。
如
果对同一个导管架,水平杆件的数量和规格都比较多,第一个x可以不表
示层数。
3、对立面上x支撑或k支撑命名以Vxx(V代表VERTICAL),第一个x为其
所在的那个面的标号,如在row A面,则x为A。
4、对CONDUCTOR一般以CNx命名;
5、对PUMP CASSION 一般以CSx命名;
6、对riser camp 一般以RCX命名;
7、对桩靴一般以PSx命名;
8、靠船帮的命名规则
靠船帮上杆件命名以BBx(BB代表BARGEBUMP),x代表不同的杆件类
型。
9、登船件的命名规则
登船件上杆件命名以BLx(BL代表BOATLANDING),x代表不同的杆件类
型。
●上部组块杆件的命名规则
上部组块杆件的定义,梁一般采用Bxx定义,柱采用Pxx来定义;
●生活楼杆件的命名规则
生活楼杆件的定义,梁一般采用Hxx定义,柱采用Cxx来定义;
●火炬臂杆件的命名规则
火炬臂杆件的定义,梁一般采用FBx定义;
注:同一个组可以通过定义不同的段来定义不同的截面。
这样可以减少组数,便于模型管理。
2.2.2 杆件的偏移
为使建立的模型跟实际的结构相似,我们需要对建立的杆件进行一定的偏移,如在模型中一般是以梁的中心为基准线,而实际建立模型是以梁的上表面做为基准面的。
一般来说需要偏移的杆件有:
●梁的基准面的偏移;
SACS操作流程–静力部分版本:A
●梁与柱连接,梁端部的偏移;
●柱与梁的连接,柱端部的偏移;
一般来说,对梁和柱进行偏移对结构的受力是有利的,一方面减少了结构的重量,
一方面可以减小结构件的有效长度。
2.2.3 杆件的有效长度
杆件有效长度的定义,对计算是有很大的影响的,为使计算的结果更加准确,根据
API规范要求,一般我们采用如下定义;
●Ky为平面内有效长度系数;
●Kz为平面外有效长度系数;
Kz与Ky的详细规定可参见API规范。
●Lb为面板的无支撑长度;
对梁上面有板的梁一般Lb很小,可定义
1m或者更小。
其不起控制作用。
2.2.4 杆件的约束
通过杆件约束的定义,可以改变杆件的受
力方式,SACS程序用“0“对杆件端点的
约束,“1“表示释放。
如
吊绳杆件两端约束的定义为:
“000111”与“000011“;
第11页共18页。