基本初等函数的导数公式基本初等函数的导数公式(一).pdf
- 格式:pdf
- 大小:1.11 MB
- 文档页数:11
基本初等函数导数公式大全1.常数函数:若f(x)=C,其中C是一个常数,则f'(x)=0。
2.幂函数:若f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。
3.指数函数:若f(x) = a^x,其中a是一个正实数且a≠1,则f'(x) = a^xlna。
4.对数函数:a) 若f(x) = ln,x,则f'(x) = 1/x。
b) 若f(x) = log_a ,x,则f'(x) = 1/(xln(a))。
5.正弦函数和余弦函数:a) 若f(x) = sin(x),则f'(x) = cos(x)。
b) 若f(x) = cos(x),则f'(x) = -sin(x)。
6.正切函数和余切函数:a) 若f(x) = tan(x),则f'(x) = sec^2(x)。
b) 若f(x) = cot(x),则f'(x) = -csc^2(x)。
7.反三角函数:a) 若f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
b) 若f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
c) 若f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
d) 若f(x) = arccot(x),则f'(x) = -1/(1+x^2)。
8.双曲函数:a) 若f(x) = sinh(x),则f'(x) = cosh(x)。
b) 若f(x) = cosh(x),则f'(x) = sinh(x)。
c) 若f(x) = tanh(x),则f'(x) = sech^2(x)。
d) 若f(x) = coth(x),则f'(x) = -csch^2(x)。
9.反双曲函数:a) 若f(x) = arcsinh(x),则f'(x) = 1/√(x^2+1)。
基本初等函数的导数公式及导数的运算法则导数是微积分中的一个重要概念,用来描述函数在其中一点上的变化率。
基本初等函数是指由常数、幂函数、指数函数、对数函数、三角函数和反三角函数等经过有限次的加、减、乘、除和复合运算所得到的函数。
在这里,我们将介绍基本初等函数的导数公式及导数的运算法则。
一、基本初等函数的导数公式1.常数函数的导数:常数函数f(x)=C的导数为f’(x)=0,其中C为常数。
2.幂函数的导数:幂函数f(x)=x^n的导数为f’(x)=n*x^(n-1),其中n为常数。
3.指数函数的导数:指数函数 f(x) = a^x 的导数为f’(x) = a^x * ln(a),其中 a 为常数且 a > 0。
4.对数函数的导数:对数函数 f(x) = log_a(x) 的导数为f’(x) = 1 / (x * ln(a)),其中 a 为常数且 a > 0。
5.三角函数的导数:正弦函数 f(x) = sin(x) 的导数为f’(x) = cos(x)。
余弦函数 f(x) = cos(x) 的导数为f’(x) = -sin(x)。
正切函数 f(x) = tan(x) 的导数为f’(x) = sec^2(x)。
余切函数 f(x) = cot(x) 的导数为f’(x) = -csc^2(x)。
其中 sin(x)、cos(x)、tan(x) 和 cot(x) 都是周期函数。
6.反三角函数的导数:反正弦函数 f(x) = arcsin(x) 的导数为f’(x) = 1 / √(1-x^2)。
反余弦函数 f(x) = arccos(x) 的导数为f’(x) = -1 / √(1-x^2)。
反正切函数 f(x) = arctan(x) 的导数为f’(x) = 1 / (1+x^2)。
反余切函数 f(x) = arccot(x) 的导数为f’(x) = -1 / (1+x^2)。
1.常数倍法则:如果f(x)是可导函数,c是常数,则(c*f(x))'=c*f'(x)。