12个基本初等函数的导数公式
- 格式:doc
- 大小:29.00 KB
- 文档页数:1
常见导数公式常见导数公式包括:① C'=0(C为常数函数);② (x^n)'= nx^(n-1)(n∈Q*);③ (sinx)' = cosx,(cosx)' = - sinx,(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2,(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2,(secx)'=tanx·secx,(cscx)'=-cotx·cscx;④ (sinhx)'=hcoshx,(coshx)'=-hsinhx,(tanhx)'=1/(coshx)^2=(sechx)^2,(coth)'=-1/(sinhx)^2=-(cschx)^2,(sechx)'=-tanhx·sechx,(cschx)'=-cothx·cschx;⑤ (e^x)' = e^x,(a^x)' = a^xlna(ln为自然对数),(Inx)' = 1/x(ln为自然对数),(logax)' =(xlna)^(-1),(a>0且a不等于1),(x^1/2)'=[2(x^1/2)]^(-1)(1/x)'=-x^(-2)。
此外,还有复合函数的求导公式:①(u±v)'=u'±v';②(uv)'=u'v+uv';③(u/v)'=(u'v-uv')/ v^2.高中阶段不需要掌握的求导公式包括:arcsinx)'=1/(1-x^2)^1/2,(arccosx)'=-1/(1-x^2)^1/2,(arctanx)'=1/(1+x^2),(arccotx)'=-1/(1+x^2),(arcsecx)'=1/(|x|(x^2-1)^1/2),(arccscx)'=-1/(|x|(x^2-1)^1/2),(arsinhx)'=1/(x^2+1)^1/2,(arcoshx)'=1/(x^2-1)^1/2,(artanhx)'=1/(x^2-1) (|x|1),(arsechx)'=1/(x(1-x^2)^1/2),(arcschx)'=1/(x(1+x^2)^1/2)。
这里将列举 12 个基本初等函数的导数以及它们的推导过程,初等函数的导数可由之计算。
函数原函数导函数
常函数
(即常
(为常数)
数)
幂函数
指数函
数
对数函
数
(且,)
正弦函
数
余弦函
数
正切函
数
余切函
数
反正弦
函数
反余弦
函数
反正切
函数
反余切
函数
口诀
为了便于记忆,有人整理出了以下口诀:
常为零,幂降次,对倒数( e 为底时直接倒数, a 为底时乘以 1/lna ),指
不变(特其余,自然对数的指数函数圆满不变,一般的指数函数须乘以 lna );正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式。
导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。
(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。
(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。
(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。
2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。
(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。
(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。
1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。
几个常见函数的导数公式和基本初等函数的导数公式函数的导数是用来描述函数在一点上的变化率。
对于常见函数的导数公式和基本初等函数的导数公式,以下是一些常见的公式和规则。
常见函数的导数公式:1.常数函数:导数为0。
即对于函数f(x)=C,其中C是常数,导数f'(x)=0。
2.幂函数:对于函数f(x)=x^n,其中n是一个实数,导数f'(x)=n*x^(n-1)。
3. 指数函数:对于函数 f(x) = a^x,其中 a 是一个正实数且a ≠ 1,导数 f'(x) = a^x * ln(a)。
4. 对数函数:对于函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,导数 f'(x) = 1 / (x * ln(a))。
5. 三角函数:常见的三角函数包括正弦函数(sin(x))、余弦函数(cos(x))、正切函数(tan(x)),它们的导数分别为 sin'(x) =cos(x)、cos'(x) = -sin(x)、tan'(x) = sec^2(x),其中 sec(x) = 1 / cos(x)。
基本初等函数的导数公式:1.常见的常数导数公式:即常数函数的导数为0,如f(x)=5的导数为0。
2.单项式函数导数公式:对于f(x)=a*x^n,其中a是常数且n是正整数,导数f'(x)=a*n*x^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,导数f'(x)=e^x,其中e是自然对数的底数。
4. 对数函数导数公式:对于 f(x) = ln(x),导数 f'(x) = 1 / x。
5. 反三角函数导数公式:包括反正弦函数(arcsin(x))、反余弦函数(arccos(x))、反正切函数(arctan(x))等。
其导数分别为:arcsin'(x) = 1 / sqrt(1-x^2)、arccos'(x) = -1 / sqrt(1-x^2)、arctan'(x) = 1 / (1+x^2)。
商求导公式目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式4个基本求导公式可以分成三类。
第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。
最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。