医用高分子材料的应用及其发展前景
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
功能高分子材料发展现状及展望一、引言功能高分子材料是指具有特殊性能的高分子材料,如导电、阻燃、自修复等。
随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
本文将从功能高分子材料的定义、发展历程、应用领域以及未来展望等方面进行探讨。
二、功能高分子材料的定义功能高分子材料是指在普通高分子材料中加入一些特殊成分或经过改性后,使其具有某种特殊性能的新型高分子材料。
这些特殊性能可以是导电、阻燃、自修复、形状记忆等。
这些新型高分子材料不仅具有传统高分子材料的优点,如重量轻、耐腐蚀等,还具有更多的优势。
三、功能高分子材料的发展历程1. 20世纪50年代至60年代初期:以聚氯乙烯为主要原料生产出各种塑胶制品。
2. 60年代中期至70年代初期:出现了聚碳酸酯、聚酰亚胺等新型高分子材料。
3. 70年代中期至80年代初期:出现了聚苯乙烯、聚苯乙烯共聚物等新型高分子材料。
4. 80年代中期至90年代初期:出现了聚丙烯、聚乙烯等新型高分子材料。
5. 21世纪以来:功能高分子材料得到了广泛应用,如导电高分子材料、阻燃高分子材料、自修复高分子材料等。
四、功能高分子材料的应用领域1. 导电高分子材料:主要应用于电池、太阳能电池板等领域。
2. 阻燃高分子材料:主要应用于建筑材料、电器设备等领域。
3. 自修复高分子材料:主要应用于汽车制造、飞机制造等领域。
4. 形状记忆高分子材料:主要应用于医学器械、智能纺织品等领域。
五、功能高分子材料的未来展望1. 研发更多的功能性高分子材料,满足不同领域的需求。
2. 提高功能高分子材料的性能,使其更加适合实际应用。
3. 推广功能高分子材料的应用,促进产业升级和经济发展。
4. 加强对功能高分子材料的研究和开发,为未来的科技进步提供支持。
六、结论随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
未来,随着技术的不断提升和需求的不断增加,功能高分子材料将会有更广阔的发展前景。
SCIENTIST81 高分子材料的基本概念1)高分子化合物指分子量很大的有机化合物,每个分子可含几千、几万甚至几十万个原子,也叫高聚物或聚合物;分子量<500,叫低分子;分子量>500,叫高分子,一般高分子材料的分子量在103~106之间。
如表1所示。
表12)高分子材料指以高分子化合物为主要组分的材料,主要包括塑料、橡胶、化学纤维等。
如图1所示。
图12 高分子材料的研究现状现在高分子材料已经同金属材料及无机非金属材料一样,成为一种重要的材料,在机械工业、燃料电池、农业种子处理及智能隐身技术等各个领域都发挥着重要的作用,也就是说人类已经进入高分子时代,从工农业生产到人们的衣食住行方方面面都渗透着高分子材料的应用。
目前为满足人们的生活生产需求以及市场的需要,我国重点对工程、复合、液晶高分子、高分子分离和生物医药这5项高分子材料进行研究,并已取得重大成果。
2.1 高分子材料应用于机械工业目前材料科学研究的重点和热门是“以塑代钢”和“以塑代铁”,此类研究不仅能够拓宽材料的选择范围,而且比高消耗又笨重的传统材料更加经济耐用、安全轻便。
例如聚甲醛材料的突出特点是具有耐磨性,经机油、四氟乙烯、二硫化钥等改性后,其磨耗系数和摩擦系数减小,被大量应用于各种螺母、齿轮、凸轮、轴承、各种导轨及泵体等机械零件的制造。
2.2 高分子材料应用于燃料电池高分子电解质可大大减薄膜的厚度,从而大大降低电池内阻,使输出功率增大。
全氟磺酸质子交换膜具有很好的化学耐受性和机械强度,同时氟素化合物的僧水性能良好,易于使水排出,但是也降低了电池运转时的保水率,影响了膜导电性,经高分子电解质膜加湿技术后,虽保证了其导电性,但也带来了电池尺寸变大、系统复杂化等一系列问题。
现在研究者正关注能耐高温的增强型全氟磺酸型等高分子材料。
2.3 高分子材料应用于农业种子处理在农业上一般将高分子材料制成干型或者湿型成膜剂,用于包裹种子,不仅可以将农药和其他物质固定在种子表面,还可以改变种子的形状,以便于机械播种,节省人力物力。
天然高分子生物材料在新型医用敷料中的应用研究天然高分子生物材料在新型医用敷料中的应用研究引言:新型医用敷料是一种用于创面修复和保护的材料,它在医学领域具有重要的应用价值。
近年来,天然高分子生物材料作为新型医用敷料的主要组成部分,引起了广泛的研究兴趣。
天然高分子生物材料具有生物相容性好、生物降解性高、生物活性物质嵌入能力强等优点,因此被广泛应用于创面愈合、局部药物递送和组织工程等方面。
本文旨在综述近年来天然高分子生物材料在新型医用敷料中的应用研究进展。
1.天然高分子材料的特性及优势1.1天然高分子的来源天然高分子是指存在于自然界中的高分子化合物,如蛋白质、多糖、纤维素等。
它们的结构复杂多样,来源广泛,比如动物体内的胶原蛋白、植物中的淀粉、水果中的果胶等。
天然高分子材料具有与生物体组织相似的特性,具备了良好的生物相容性和生物降解性。
1.2天然高分子的优势天然高分子生物材料具有以下优势:(1)生物相容性好:天然高分子材料与人体组织有良好的相容性,不会引发明显的免疫反应和毒副作用。
(2)生物降解性高:天然高分子材料能被人体内的酶和细胞降解,不会残留在体内,有利于创面的自愈合过程。
(3)生物活性物质嵌入能力强:天然高分子材料可以与生物活性物质(如药物、生长因子)相互作用,实现药物释放、生长因子嵌入等功能。
2.天然高分子生物材料在新型医用敷料中的应用2.1创面修复天然高分子生物材料在创面修复中具有重要作用。
蛋白质是一种常见的天然高分子材料,可用于制备胶原蛋白基质。
胶原蛋白基质具有良好的生物相容性和生物降解性,能够为创面提供支架结构和生长因子释放平台,促进创面的修复和再生。
多糖也是常见的天然高分子材料,在敷料中的应用主要体现在阻止水分流失、增加创面潮湿度、促进上皮细胞迁移和新生血管的形成等方面。
2.2局部药物递送天然高分子生物材料可用于局部药物递送。
通过结合生物活性物质与天然高分子材料,可以实现药物的缓慢释放和持续性药效。
浅谈高分子材料在生物医用领域的发展与应用上官勇刚浙江大学高分子科学与工程学系高分子合成与功能构造教育部重点实验室50 年代以来,高分子科学发展的一个重要特征是,在本学科进一步向纵深发展的同时,开始向其他相关学科进行渗透并形成了许多新的学科边缘领域。
高分子生物材料( Polymeric Biomaterials)就是高分子科学与生命科学之间相互渗透而产生的一个重要边缘领域。
生物医用高分子材料是生物高分子材料中最为重要的组成部分,生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。
这类高分子材料的研究有着非常重要的科学意义和实用价值。
随着高分子化学工业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器以及骨生长诱导剂等。
近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。
生物医用高分子材料的发展阶段生物医用高分子材料的发展经历了两个阶段。
第一阶段是工业高分子材料在医学中的自发应用,这个阶段开始于1937年工业聚甲基丙烯酸甲酯用于制造假牙的牙床,其特点在于是,所用的材料都是工业上已经投产的现成材料,对于其应用价值,也已进行了一系列基础性的研究。
第二阶段是根据生命科学的需要,在分子水平上设计开发新型的生物医用高分子材料,并且对已经成熟的生物医用高分子材料进行优化。
这个阶段始于1953年医用级有机硅橡胶的出现,之后于1962年又开发出体内可吸收的聚羟基乙酸酯用作缝合线。
60年代中期起又依据心血管材料的要求,开发出多种抗凝血的聚(醚-氨酯)生物材料。
所有这些都标志着高分子生物材料已开始进入一个以分子工程研究为基础的发展时期。
生物医用高分子材料的分类与应用一.惰性生物医用高分子材料1)血液相容性材料(抗血凝性材料)生物医用高分子存在的最大难点在于血凝性。
高分子化工材料的应用现状及发展趋势摘要:近年来在系列政策指引下,我国高分子化工材料取得快速发展。
未来在新能源和电子电器行业带动下,高分子化工材料产业还将保持年均7% ~8%的增长水平,并将实现自给率的快速提升;其中高性能膜材等产品增速较快,所占份额将再次增长。
为进一步加快我国石化行业转型发展进程,应有效利用高分子材料发展契机,转变发展思路和策略,通过合作共赢,由易到难,针对性的实施产品开发和生产,为我国石化项目在“双碳”背景下发展打开新的出路。
关键词:高分子化工材料;现状;趋势引言高分子化工材料是指产品性能优异、附加值大、技术壁垒高的化工材料。
与新材料不同在于后者更多是从新应用领域或者新应用产品角度界定,并不一定具备高性能、高附加值和高技术密集度等特点。
如可降解材料属于新材料,但并不具备高性能和高技术密集度的特点,因此并不属于高分子化工材料。
1.高分子化工材料产业发展环境近年,世界主要国家纷纷制定出台高分子材料发展的相关政策和发展规划,其中 5G 产业、环境保护、绿色发展、电动汽车、航空航天、氢能网络等方面均被列为发展重点,与之相关的电动汽车材料、电子信息材料、航空航天材料等领域迎来广阔的发展空间和机遇。
其中,高分子化工材料在高分子材料领域具有举足轻重的地位。
我国目前正处于高质量发展关键阶段。
高分子化工材料对于我国产业转型升级发展、提高人民生活质量意义重大。
2020年我国高分子化工材料总消费量为2 978万吨,预计2025年将达到4 297万吨,5年年均增长率高达7.6%,远高于世界平均水平;届时我国在世界高性能材料市场占比也将从 2020 年的25%进一步提升至28%。
新能源和电子电器行业是我国高分子化工材料的最大下游消费领域,两者占比近70%。
未来随着国内电动车、光伏、风能、氢能等相关细分行业的快速发展,新能源领域所占份额还将进一步提升。
电子电器行业因手机、电脑、电视等子行业市场陷入饱和,增速不及其他行业。
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
二、发展历程1. 起源阶段高分子材料的起源可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有优异的性能,但受限于资源有限和加工工艺不成熟的问题。
2. 合成阶段20世纪初,人们开始研究合成高分子材料,通过聚合反应将小分子单体转化为高分子链状结构。
1920年代,合成橡胶和聚氯乙烯等合成高分子材料的工业化生产开始。
此后,合成高分子材料的种类不断增加,如聚酰胺、聚酯、聚酰亚胺等。
3. 发展阶段20世纪50年代至70年代,高分子材料得到了快速发展。
新的合成方法和材料改性技术的出现,使高分子材料的性能得到了显著提升。
例如,聚四氟乙烯的发明解决了摩擦学领域的难题,聚碳酸酯的开发推动了光纤通信的发展。
4. 应用阶段20世纪80年代至今,高分子材料开始广泛应用于各个领域。
例如,高分子塑料在包装、建筑、汽车等行业得到了广泛应用;高分子纤维在纺织、医疗、防弹等领域发挥着重要作用;高分子涂料在建筑、家具等领域具有广阔的市场前景。
三、未来发展趋势1. 功能化未来,高分子材料将更加注重功能化的发展。
通过在分子结构中引入特定的功能基团,可以赋予高分子材料特殊的性能,如阻燃、自修复、导电等。
这将进一步扩展高分子材料的应用领域。
2. 绿色环保随着环境保护意识的提高,高分子材料的绿色环保性将成为未来发展的重要方向。
研发可降解高分子材料、循环利用高分子材料等将成为关注的焦点。
3. 多功能复合材料未来,高分子材料将与其他材料进行复合,形成多功能复合材料。
例如,高分子纳米复合材料、高分子陶瓷复合材料等。
这将进一步提升高分子材料的性能和应用范围。
4. 智能化随着人工智能和物联网技术的发展,高分子材料将与智能技术相结合,实现智能化应用。
例如,智能高分子材料可以根据环境变化自动调节性能,实现自适应功能。
高分子化工材料的应用现状及发展趋势摘要:目前,高分子化学材料广泛应用于不同行业,与国家的发展有着牢不可破的联系。
本文研究了多分子化学材料在日常生活和工业中的应用,并分析了多分子化学材料的地位和趋势。
关键词:高分子化工材料;应用现状;发展方向一、引言高分子化学材料在化学材料中非常重要,在化学材料中也有重要的研究方向,这在许多行业中都是不可或缺的。
随着各种技术的继续发展,高分子化学材料获得了新的发展机会,专业人员成为高分子化学材料生产率的更高标准,从根本上满足了多元化开发的实际需求。
二、高分子化工材料概述高分子化学材料是一种以高分子为基础的复合材料,也是一种新型的合成材料。
目前,从工业生产的高分子化学的橡胶和塑料制品、化学纤维、涂料工业材料和其他类高分子材料化学过程非常简单,不仅材料种类非常多样,因此拥有其它高分子化学材料没有可比性。
三、高分子材料的优越性和局限性1.高分子材料的优越性与其他材料相比,高分子材料表现出了很强的优势,包括:第一,高分子材料的强度比其他材料强,也表现出更强的耐磨性;其次,高分子材料本身的耐腐蚀性似乎更强,在使用中越能发挥更多的功能;第三,高分子材料比透射化学材料看起来更轻,种类也更丰富,可以广泛应用于不同的行业。
2.高分子材料的局限性随着社会经济的不断发展,市场对高分子材料的需求越来越大,不同种类的高分子材料将广泛应用于军事技术、电子信息技术等不同领域。
但目前,中国大部分高分子化学材料的生产工艺似乎仍相当落后,因此大部分供需现象将会存在。
中国长期以来一直在进口技术要求较高的高分子材料,这对我国经济的发展没有长期的帮助。
三、常见的高分子化工材料1.高分子智能材料目前,智能高分子材料已经广泛应用于国内各行业,这种材料也可以随着环境的变化而不断变化。
大多数高分子智能材料具有极强的修复能力,可广泛应用于建筑行业。
大多数智能聚合物基材料在寒冷的天气中以固体的形式出现,而在炎热的天气中可以传输90%的光和热。
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类具有特殊结构和性质的材料,由于其独特的性能和广泛的应用领域,成为现代材料科学的重要研究方向之一。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
二、高分子材料的发展历程1. 起源和发展初期高分子材料的起源可以追溯到19世纪末,当时科学家开始研究天然高分子材料,如橡胶和丝绸。
20世纪初,合成高分子材料的研究逐渐兴起,其中最具代表性的就是合成橡胶和塑料。
20世纪30年代至50年代,高分子材料的研究进一步发展,出现了聚合物材料的合成和改性技术,使高分子材料的应用领域得到了拓展。
2. 高分子材料的应用领域扩展随着科技的进步和社会的发展,高分子材料的应用领域不断扩展。
在电子行业,高分子材料被广泛应用于电子元件的封装和绝缘材料;在汽车工业,高分子材料被用于制造轻量化零部件,提高汽车的燃油效率;在医疗领域,高分子材料被用于制造人工器官和药物传递系统等。
此外,高分子材料还在航空航天、建筑、纺织、包装等领域得到了广泛应用。
3. 高分子材料的研究进展近年来,高分子材料的研究进展主要集中在以下几个方面:(1) 新型高分子材料的合成:研究人员通过改变合成方法和反应条件,设计和合成了许多新型高分子材料,如聚合物纳米复合材料、共聚物、高分子水凝胶等。
(2) 高分子材料的功能化改性:通过添加特定的功能单体或化合物,可以赋予高分子材料特殊的性能,如导电性、光学性能、生物相容性等。
(3) 高分子材料的可持续发展:随着环境保护意识的增强,研究人员开始关注高分子材料的可持续发展,提出了许多可降解高分子材料和可回收利用的研究方向。
三、高分子材料的未来发展趋势1. 功能化高分子材料的发展随着科学技术的进步,人们对高分子材料的功能性要求越来越高。
未来,高分子材料将朝着多功能、智能化的方向发展,例如具有自修复能力、自感应能力和自适应能力的高分子材料将会得到更广泛的应用。
2. 绿色高分子材料的研究环境保护和可持续发展已成为全球研究的热点。
功能高分子材料论文(生物医学方面的应用)摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。
关键词:功能高分子材料,生物医用高分子材料。
1 生物医用高分子材料的现状生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。
在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。
生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。
该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。
其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。
功能高分子材料的应用及发展前景摘要:功能高分子材料因其重量轻、种类多、特异性强等特点,在生物医用、化学工业、信息技术以及电子领域得到了广泛的应用。
目前,功能高分子材料正在飞速发展,为了适应新技术在各行业的发展需要,功能高分子材料正逐步发展成为如电子材料、光热材料等具备多功能化的材料。
从本质上讲,功能高分子材料是以高分子物理、化学等相关学科为基础的,并且将物理学以及生物学等学科紧密联系的一门学科。
本文系统的研究了功能高分子材料的现状、性能和应用趋势,并对其应用前景进行了分析和展望。
1功能高分子材料概述功能高分子材料是是个新兴的领域,自20世纪60年代开始发展。
它是由分子量大的长链分子组成的具有特殊功能的聚合物和复合材料,具有特殊的力学、电学、光学和磁学的某一种性能。
近些年,高分子材料的研究与应用迅速发展,在越来越多的领域中产生了巨大的影响。
高分子材料的发展,提供了更多实用性高的新型材料和新产品,应用于农业生产、工业生产和人类生活的方方面面,与此同时,也提供了更多具有功能性的材料和高性能材料用以推进科学技术的新发展。
目前功能高分子材料的研究主要在以下几个方面:光功能高分子材料、液晶高分子材料、电子功能高分子材料和医用功能高分子材料、环境可降解高分子材料、吸附和分离功能材料等。
最常用的功能高分子材料有光学功能高分子材料、液晶高分子材料以及吸附分离功能高分子材料等。
2功能高分子材料具体应用的研究高分子材料具有广泛的应用性,在很多领域都得到了充分的利用,主要包括:功能高分子材料,液晶高分子材料以及吸附分离功能高分子材料等,具体分析如下:2.1光功能高分子材料一般来说,光功能高分子材料受到光的作用,会引起物理变化,比如光导致的变色,并且还会出现一些化学变化,包括光分解的高分子材料。
光功能高分子材料中光的特性,会通过化学和物理的双重作用反映出来。
目前,光功能高分子材料主要用于太阳能和电子工业的开发和利用。
2.液晶高分子材料目前,液晶高分子材料是一种新型的功能性高分子材料。
生物医用高分子材料的应用及发展前景 摘要:由于生物医学工程、材料科学和生物技术的发展,生物医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。本文主要介绍了医用高分子材料的分类和应用,综述医用高分子材料在生物医学上的研究进展,并展望其研究前景。 关键词:生物医用高分子材料;应用;发展
Application and Prospects of the Biopolymer Materials
Abstract:Biomedical polymer materials and produets have increasingly found clinical application owing to their excellent perfomences such as unique biological histocompatibility, and non-toxicity with the development of biomedical engineering, materials science and biotechnology.This article introduces biomedical polymer material development and the research achievement of biomedical polymer materials,.The trend of biomedical polymer materials in the future was also prospected. Keywords:Polymeric biomaterials; Application; Development
医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、血液学等多种边缘学科。目前医用高分子材料的应用已遍及整个医学领域。
1 生物医用高分子材料的发展。 所谓生物医用高分子材料(Polymeric biomaterials)是指在生理环境中使用的高分子材料[1],它们中有的可以全部植入体内,也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。生物医用高分子材料分合成和天然两大类,本文主要讨论合成医用高分子材料。 生物医用高分子材料的研究和临床应用已经历了三个发展阶段。 第一代生物医用高分子材料主要有硅橡胶、高分子量聚乙烯等有机高分子材料。其最大特点是材料本身的―生物惰性‖,它们在人体内相对稳定,不易分解或生物降解;同时材料本身具有良好的生物相容性和理想的免疫反应性,而且其力学强度和物理性能适宜,能与人体环境很好地相匹配,保证植入材料与生物组织的形变相协调[2]。 第二代生物医用高分子材料有两期。第一期,是医用级有机硅橡胶的出现,随后又发展了四种聚(醚-氨)酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。20世纪60年代,美国DuPont公司生产出热塑性聚氨酯,它具有比硅橡胶更好的耐屈挠疲劳性,广泛应用于植入生物体的医用装置及人造器官,如人工瓣膜[3]、人工心脏[4]、人工心脏辅助装置[5]、人工血管[4, 6]、介入导管[7]、人工关节[8]、人工软骨[9]及人工输尿管[10]等。 第二期是生物降解性高分子材料及其他无机物材料。其特点是材料在机体中随着主体器官的修复、组织的再生和伤口的愈合而逐渐被生物降解和吸收,并最终为机体再生的组织和器官所替代。 第三代生物医用高分子材料在生物体内能被降解,最终为机体所吸收,同时材料本身又具有生物活性,能参与机体的生理活动,在分子水平上激活基因,刺关细胞产生响应,从而诱导组织和器官的形成,是细胞和基因的活性化材料 (Cell and Gene Activating Materials)[11]。另一焦点是从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料[12]。
2 生物医用高分子材料的基本要求 医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。除了作为材料在力学强度等方面的普遍要求之外,生物医用高分子材料的要求可以综合概括为以下几个方面[13]: (l)生物功能性:因各种生物材料的用途而异,但生物材料植入体内都必须发挥所期望的功能或诱发预期的反应,如:作为缓释药物时,药物的缓释性能; (2)生物相容性:可概括为材料和活体之间的相互关系,主要包括血液相容(抗凝血性)和组织相容性(无毒性、无致敏性、无遗传毒性、无致癌性、无热原反应、无免疫排斥反应等); (3)化学稳定性:耐生物老化性(特别稳定)或可生物降解性(可控降解);在化学上是不活泼的,不会因与体液或血液接触而发生变化; (4)可加工性:能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒等)。
3 生物医用高分子材料的分类及研究进展 3.1 药用高分子材料 药用高分子系指利用功能高分子聚合物的主链或支链,结合具有药理活性的某些药物基团,使其成为在体内容易降解控释,有足够药理活性的高分子药物,这类新型药物具有低毒、高效、长效、定向、控释等特点。高分子药物系指在药物制造过程中,根据功能高分子聚合物的物化特性,分别用于药物的稀释剂、粘合剂、包埋材料、微型胶囊、包衣或内外包装材料等,其本身并不具有药效,只是在药物成品过程中,起着不可缺少的从属辅助作用或者强化作用。实际上两者并没有严格界限[14]。 根据药用高分子结构与制剂的形式,可分三类:(l)具有药理活性的高分子药物。(2)低分子药物的高分子化。 (3)药用高分子微胶囊。 所用高分子材料有天然高分子,如骨胶、明胶、海藻酸钠、琼脂等;半合成的高分子有纤维素衍生物等;合成高分子有聚葡萄糖酸、聚乳酸及乳酸与氨基酸的共聚物等。包覆方法有原位聚合法、界面聚合法、相分离法和溶液干燥法等。国内有许多单位在研究,如浙江大学的朱康杰等研究了聚电解质、聚膦腈在药物控释中的应用[15, 16],天津大学的常津等研究了聚原酸酷载药毫微囊的合成及体外释放机理等[17, 18]。 3.2医药包装用高分子材料 近几年,不同的高功能性和高分子材料被称为―工程塑料‖,在医药包装方面正逐年增加[19]。包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酷、聚苯乙烯、聚碳酸酷等,由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器,制造饮片和胶囊等固体制剂的包装。新型聚醋聚蔡二甲酸乙二醇酷 (PEN)[20]除具有优异的力学性能及阻隔性能外,还有较强的耐紫外线性,可用于口服液、糖浆等的热封装。可消毒的包装材料HDPE、LDPE、PP、PET、PVC;口服药的包装材料PVC、PE;普通医药和可处理的包装材料PVC、PE、PP、PET、铝箔、玻璃纸;软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯一醋酸乙烯共聚物等[20],常加工成复合薄膜,主要用来包装固体冲剂,片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、配剂等外用药液的包装,则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。 3.3与血液接触高分子材料 与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣 膜、人工肺等的生物医用材料,要求这种材料要有良好的抗凝血性、抗细菌粘附性,即在材料表面不产生血栓、不引起血小板变形,不发生以生物材料为中心的感染。此外,还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。人工血管用材料有尼龙、聚酷、聚四氟乙烯、聚丙烯及聚氨醋等。人工心脏材料多用聚醚氨酷和硅橡胶等。人工肺则多用聚四氟乙烯、硅橡胶、超薄聚(涂在多孔PP膜上)、超薄乙基纤维(涂在PE无纺布或多孔PP膜上)等材料。人工肾用材料除要求具备良好的血液相容性外,还要求材料具有足够的湿态强度、有适宜的超滤渗透性等,可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚矾及聚醚矾等。 3.4组织工程用高分子材料 组织工程 (Tissue Engineering)是应用细胞生物学和工程学的原理,在正确认识哺乳动物正常及病理两种状态下的组织结构与功能关系的基础上,研究和开发关于修复、维护和促进人体各种组织器官功能和形态的一门新学科[21]。组织工程中的生物材料主要发挥下列作用[22]:(1)提供组织再生的支架或三维结构。(2)调节细胞生理功能及气管的修复。作为这种材料使用的聚合物主要有聚乳酸(PLA)、聚轻基乙酸 (PGA)及其共聚物 (PLGA)等[23-25]。 2.5医疗器件用高分子材料 高分子材料制的医疗器件有一次性医疗用品(注射器、输液器、检查器具、护理用具、麻醉及手术室用具等)、血袋、尿袋及矫形材料等[26]。一次性医疗用品多采用常见高分子材料如聚丙烯和聚4-甲基-1-戊烯制造。血袋一般由软PVC或LDPE制成。由PU制的绷带固化速度快,质轻层薄,不易使皮肤发炎,可取代传统的固定材料—石膏用于骨折固定。硅橡胶、聚酷、聚四氟乙烯、聚酸配及聚乙烯醇等都是性能良好的矫形材料[27-29],己广泛用于假肢制造及整形外科等领域。
4生物医用高分子材料的发展方向 医用高分子的发展巳有50多年的历史,其应用领域巳渗透到整个医学领域,取得的成果是十分显赫的。但距离随心所欲地使用高分子材料及其人工脏器来植换人体的病变脏器尚很远很远,因此尚需作深入的研究探索。就目前来说,医用高分子将在以下几个方面进行深入的研究:(1)人工脏器的生物功能化、小型化、体植化。(2)高抗血栓性材料的研制。(3)发展新型医用高分子材料。(4)推广医用高分子的临床应用。
5 结语 高分子材料虽然不是万能的,不可能指望它解决一切医学问题,但通过分子设计的途径,合成出具有生物医学功能的理想医用高分子材料的前景是十分广阔的。有人预计,在21世纪,医用高分子将进入一个全新的时代。除了大脑之外,人体的所有部位和脏器都可用高分子材料来取代。仿生人也将比想象中更快地来到世上。
参考文献 [1] Wen B Y. Polymeric biomaterials and its applications[J]. New chemical Materials, 2001, 29(19):28-32. [2] Hench L L. Biomaterials[J]. Science, 1980, 208:826-831. [3] Chandran K B, Kim S H, Han G.. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position[J]. Biomech, 1991, 24(6):385-395. [4] Min B G., Kim H C, Lee S H, et al. A moving-actuator type electromechanical total artificial heart--Part I: Linear type and mock circulation experiments[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(12):1186-1194. [5] Szycher M, Poirier V, Dempsey D. Synthrsis and fabrication of polyurethane elastomers for cardiac assist devices [C]. Boston: American society of mechanical engineers, applied mechanics division, 1979, 743-747. [6] Kaibara M, Kawamoto Y, Yanagida S, Kawakami S. In vitro evaluation of antithrombogenicity of hybrid-type vascular vessel models based on analysis of the mechanism of blood coagulation[J]. Biomaterials, 1995, 16:1229-1234.