rheology(流变学)
- 格式:pdf
- 大小:533.58 KB
- 文档页数:29
食品流变学的介绍以及应用美国化学家宾汉于1928年首次提出了流变学的概念,在食品物性学中,食品流变学的研究是发展最早的食品力学方面的研究、同时也是最为重要的研究。
其研究对象位食品,食品流变学特性与食品的化学分子、分子构造、分子内结合、分子间结合的状态、分散状态、以及组织结构有着极大的关系。
流变学(rheology)是有关物质的形变和流动的科学。
食品流变学是流变学的一个分支,是研究食品物质流动和变形发生、发展规律的科学。
近年来,流变学研究范围涉及到胶体体系和高分子的粘弹性、异常粘弹性、塑性流变等。
食品含有大量的胶状蛋白质、碳水化合物等高分子物质,与食欲有关的硬软度、口味、滋味等,均与流变学研究范围所包括的各种物性有密切关系[1]。
不久的将来,随着食品流变学研究的深入,将对食品味道等心理感觉有可能逐渐以某种物理量来表示。
流变学可以把各种食品原料加工过程中的那些微妙的物性变化加以科学的研究,而这些变化过去用化学方法是无法进行研究的。
食品流变学通过采用湍流(turbulence)、混沌(chaos)、数理统计(statistical theory)、最优化技术等概念和技术方法,使古老的食品科学鼎立于实验、理论和计算三根支柱之上。
例如,在炼乳生产中,表现粘度的控制是生产过程至关重要的环节。
同样,人造黄油的扩展度,糖果的硬度,肉的韧度等也都是产品质量的重要指标之一,因此,为了进一步提高产品质量,必须深入地了解和掌握食品物质的流动和变形特性,研究在各种条件下这些特性变化的规律及对产品质量和加工过程的影响。
正是在这个基础之上,食品流变学得以兴起和不断地发展。
它是食品工业向高质量、大型化、自动化发展的必然结果,引起了越来越多的食品工程技术人员的重视。
研究不断深入,应用日趋广泛。
食品物质种类繁多,多数物质由于组成的特殊性,一般都具有极其复杂的流变特性,从物理特性来看,几乎包括了所有不同流变特性的物质。
因此,在研究这些食品物质的流变特性时,仅仅依靠流变学的一般理论是远远不够的,必须从食品特性入手,研究其流变特性,建立起一套适合食品物质流变特性分析、研究的理论和方法。
流变学相关知识及其在药剂学中的应用简介1. 流变学(Rheology)定义:研究物质流动和变形的科学。
2. 流变学的发展•1676年,胡可定律:弹性固体(形变与受力成正比)•1687年,牛顿定律:粘性液体(流动助力与流动速度成正比)•1905年,爱因斯坦:悬浮液粘度方程•1920年,宾汉(bingham)提出流变学概念•1945年,首台旋转粘度计问世•1951年内,首台旋转流变仪问世3. 流变学中相关概念•粘性(viscosity):流体在外力作用下质点间相对运动而产生的阻力;•变形(deformation):对某一物体施加压力时,其内部各部分的形状和体积发生变化的过程;•应力(stress):对固体施加外力,固体内部存在一种与外力相对抗的内力而使固体保持原状,此时单位面积上存在的内力称为应力;•弹性(elasticity):物体在外力作用下发生变形,当外力解除后恢复到原来的形状的性质;•塑性(plasticity):当外力消除后不能恢复到原有的形状的性质;•弹性变形(elastic deformation):可逆的形状变化;•塑性变形(plastic deformation):非可逆的形状变化;•屈服值S0(yield value):能引起变形或流动的最小应力称为屈服值;•剪切应变(shearing strain)和剪切应力(shearing stress):固定固体立方体地面,当对顶部A沿切线方向施加压力F时,物体以一定速度v发生变形。
这种变形称为剪切应变(shearing strain)γ。
单位面积上的作用力F/A称为剪切应力(shearing stress)S。
•理想固体中,剪切应力与剪切应变之间符合:胡可定律:S=γG,式中,S为剪切应力;γ为剪切应变;G为剪切模量(shearing module:指单位剪切应变所需要的剪切应力)•对液体:受剪切力F作用即流动,是不可逆过程。
对于理想液体,S与D成正比,即牛顿粘性定律。
湖北工业大学流变学复习资料湖北工业大学流变学复习参考题型挑选填空题直观综合仅供参考第一章:绪论1.何谓流变学(rheology)?流变学就是研究和阐明物质或材料流动和变形规律的科学。
就是化学、力学和工程学交叉的交叉学科。
2.流变学分支和方法论地位流变学分支:高分子流变学、石油工程流变学、食品流变学、悬浮液流变学、地质流变学、泥石流流变学、固体流变学(金属加工流变学、岩石流变学)、非牛顿流体流变学、分形体流变学、生物流变学和血液流变学,光、电、磁流变学、日用化工流变学、表面活性剂流变学、界面流变学(至少记住5个p1)方法论地位:流变学本身即为彰显出来朴素的实事求是观点,具备方法论促进作用,可以与多种学科交叉,构成代莱学科分支。
?3.流变学主要研究对象:非牛顿流体的流变特性、粘弹性材料的流变特性、流变测量技术、流变状态方程,即本构方程(揭示物质受力和变形的本质规律。
例:牛顿粘性定律、胡克定律)。
4.流变学与化学工程的关系/流变学与日用化工(重化工?)的关系化学工程:单体聚合反应、高分子加工、乳化过程与流体的流变行为密切相关。
必须研究其传达和反应过程、设计反应器、工程压缩,必须对演变过程特性存有明晰重新认识。
流变学提供材料的流变状态方程,用于解决非牛顿流体的动量传递问题,并进一步为非牛顿流体的热质传递和反应工程提供基础。
流变学是非牛顿流体化学工程的重要理论基础之一。
日用化工:日用化学品(膏霜、乳液)为多组分、多相态的非牛顿流体。
日用化工过程为非牛顿流体的制造过程。
1)乳液、泡沫的稳定性:包含热稳定性、耐剪切稳定性、储存稳定性等(表面粘度、表面弹性)2)产品的涂敷性:光滑性和涂敷深浅性能3)抽走能力,屈服应力4)增稠性:各种流变性调节剂(粘多糖、聚丙烯酸等)5)流平性指甲油等6)触变性膏霜、牙膏7)流动控制能力在洗衣粉料浆中加入适量甲苯磺酸钠,调节降低粘度,使之易于喷粉成型。
5.非牛顿流体的特殊性质:剪切变稀、剪切减仁和、屈服应力、触变性、粘弹性、爬竿效应、湍流减阻效应(toms效应)、无管虹吸现象、挤出胀大6.非牛顿流体的触变性:若流体的应力或粘度随剪切时间的增大而减小,并最终达到平衡粘度,该特性称为正触变性,简称触变性。