Rheology(流变学基础)
- 格式:ppt
- 大小:261.00 KB
- 文档页数:29
第七章流变学基础学习要点一、概述(一)流变学1. 定义:流变学(rheology)是研究物质变形和流动的科学。
变形是固体的固有性质,流动是液体的固有性质。
2.研究对象:(1) 具有固体和液体两方面性质的物质。
(2) 乳剂、混悬剂、软膏、硬膏、粉体等。
(二)变形与流动1. 变形是指对某一物体施加外力时,其内部各部分的形状和体积发生变化的过程。
2. 应力是指对固体施加外力,则固体内部存在一种与外力相对抗而使固体保持原状的单位面积上的力。
3. 流动:对液体施加外力,液体发生变形,即流动。
(三)弹性与黏性1. 弹性是指物体在外力的作用下发生变形,当解除外力后恢复原来状态的性质。
可逆性变形----弹性变形。
不可逆变形----塑性变形2. 黏性是流体在外力的作用下质点间相对运动而产生的阻力。
3. 剪切应力(S):单位液层面积上所施加的使各液层发生相对运动的外力,FSA=。
4. 剪切速度(D):液体流动时各层之间形成的速度梯度,dvDdx =。
5. 黏度:η,面积为1cm2时两液层间的内摩擦力,单位Pa·s,SDη=。
(四)黏弹性1. 黏弹性是指物体具有黏性和弹性的双重特征,具有这样性质的物体称为黏弹体。
2. 应力松弛是指试样瞬时变形后,在不变形的情况下,试样内部的应力随时间而减小的过程,即,外形不变,内应力发生变化。
3. 蠕变是指把一定大小的应力施加于黏弹体时,物体的形变随时间而逐渐增加的现象,即,应力不变,外形发生变化。
二、流体的基本性质图7-1 各种类型的液体流动曲线A :牛顿流动B :塑性流动C :假黏性流体D :胀性流动E :假塑性流体,表现触变性(一)牛顿流体:1. 特征(1) 剪切速度与剪切应力成正比,S=F/A=ηD或1SDη=。
(2) 黏度η:在一定温度下为常数,不随剪切速度的变化而变化。
2. 应用纯液体、低分子溶液或高分子稀溶液。
(二)非牛顿流体1. 特征:(1) 剪切应力与剪切速度的关系不符合牛顿定律。
第七章流变学基础学习要点一、概述(一)流变学1、定义:流变学(rheology)就是研究物质变形与流动的科学。
变形就是固体的固有性质,流动就是液体的固有性质。
2、研究对象:(1) 具有固体与液体两方面性质的物质。
(2) 乳剂、混悬剂、软膏、硬膏、粉体等。
(二)变形与流动1、变形就是指对某一物体施加外力时,其内部各部分的形状与体积发生变化的过程。
2、应力就是指对固体施加外力,则固体内部存在一种与外力相对抗而使固体保持原状的单位面积上的力。
3、流动:对液体施加外力,液体发生变形,即流动。
(三)弹性与黏性1、弹性就是指物体在外力的作用下发生变形,当解除外力后恢复原来状态的性质。
可逆性变形----弹性变形。
不可逆变形----塑性变形2、黏性就是流体在外力的作用下质点间相对运动而产生的阻力。
3、剪切应力(S):单位液层面积上所施加的使各液层发生相对运动的外力,FSA=。
4、剪切速度(D):液体流动时各层之间形成的速度梯度,dvDdx=。
5、黏度:η,面积为1cm2时两液层间的内摩擦力,单位Pa·s,SDη=。
(四)黏弹性1、黏弹性就是指物体具有黏性与弹性的双重特征,具有这样性质的物体称为黏弹体。
2、 应力松弛就是指试样瞬时变形后,在不变形的情况下,试样内部的应力随时间而减小的过程,即,外形不变,内应力发生变化。
3、 蠕变就是指把一定大小的应力施加于黏弹体时,物体的形变随时间而逐渐增加的现象,即,应力不变,外形发生变化。
二、流体的基本性质图7-1 各种类型的液体流动曲线 (一)牛顿流体: 1、 特征 (1) 剪切速度与剪切应力成正比,S=F/A=ηD 或1S D η=。
(2) 黏度η:在一定温度下为常数,不随剪切速度的变化而变化。
2、 应用纯液体、低分子溶液或高分子稀溶液。
(二)非牛顿流体 1、 特征:(1) 剪切应力与剪切速度的关系不符合牛顿定律。
(2) 黏度不就是一个常数,随剪切速率的变化而变化。
第十四章流变学基础第一节概述一、流变学的基本概念(一)流变学研究内容流变学—Rheology来源于希腊的Rheos=Sream(流动)词语,是Bingham和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。
流变学主要是研究物质的变形和流动的一门科学。
对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。
对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。
此时在单位面积上存在的内力称为内应力(stress)。
对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity)。
把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑形变形(plastic deformation)。
流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity)有关,因此流动也可视为一种非可逆性变形过程。
实际上,多数物质对外力表现为弹性和粘性双重特性,称为粘弹性物质。
(二)剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。
因此在流速不太快时可以将流动着的液体视为互相平行移动的液层,叫层流,如图14-1。
由于各层的速度不同,便形成速度梯度du/dy,或称剪切速度。
这反映流体流动的特征。
由于流动阻力便产生速度梯度,流动较慢的液层阻滞着流动较快液层的运动。
使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A)上所需施加的这种力称为剪切应力,简称剪切力(shearing force),单位为N·m-2,以S表示。
剪切速度(rate of shear),单位为s-1,以D表示。
剪切应力与剪切速度是表征体系流变性质的两个基本参数。
图14-1 流动时形成的速度梯度二、流变学在药剂学中的应用流变学在药学研究中的重要意义在于可以应用流变学理论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成以及制备、质量控制等进行评价。
《临床血液流变学》P5第二章流变学的基本知识第一节流变学、生物流变学及类血液流变学一、流变学流变学(rheology)一词中的rheo起源于希腊语,有流动之意。
远在公元前5世纪,人们就流传着希腊哲学家Heraclitus的一句脍炙人口的名言:“一切在流,一切在变”。
流变学一词由此而来。
然而,流变学成为一门独立学科则是20世纪20年代的事情,当时,由于橡胶、塑料、油漆、润滑剂以及食品工业的迅速发展,推动了对上述原材料的研究。
因为这些物质都包含有流动和复杂变形的结构,这些物质所具有的运动现象,很难用经典的弹性力学和流体力学的方法来分析,为此,研究这类物质的流动与变形,必须紧密结合这些物质的结构和物理、化学属性,美国的物理化学家Bingham 在对油漆、糊状粘土、印刷油墨、润滑剂以及某些食品作了大量的研究后,认为这些物质都包含有使其能够复杂变形和流动的结构,其运动方式远较一般弹性体的变形和一般液体的流动复杂。
同时还指出,这些物质的复杂变形发生在流动过程中,并对其流动产生重大影响,在他的倡议下,美国于1928年成立了流变学会,并把研究物质流动和变形的科学称为流变学。
与流体力学、弹性力学、材料力学相比,流变学有2个突出的不同特点:其一,流变学研究的重点不仅限于物质的粘性运动和弹性变形,而是兼有这2种物理属性,或者更确切地说,是由这2种物理属性结合而成的物质的新的物理属性,即粘弹性和塑弹性。
其二,流变学研究的内容和范围不仅从宏观角度去探讨物质的力学性质和行为,而且还从微观的角度去揭示物质内部结构及其理化性质与其宏观力学和运动的关系。
由此可见,流变学又可以看作是物体的力学与构成物体的物质化学互相渗透的科学,正是从这一点出发,流变学又被定义为有关物体的力学性质和力学行为的物理化学。
物质在外力作用下能够变形或运动,是物质的普遍特性,不论是液体的流动,弹性体的变形或者是更为复杂的塑性、粘弹性以及塑弹性,均属于物质流变性的表现方式。