冀教版数学八年级上册(教学设计)《13.2全等图形》
- 格式:docx
- 大小:137.74 KB
- 文档页数:4
冀教版数学八年级上册《13.2 全等图形》说课稿4一. 教材分析冀教版数学八年级上册《13.2 全等图形》是学生在掌握了平面几何的基本概念和性质之后进行学习的内容。
全等图形是几何中的一个重要概念,它是判断两个图形是否完全相同的重要依据。
本节课通过讲解全等图形的定义、性质和判定方法,使学生能够理解和运用全等图形解决实际问题。
教材从实际例子出发,引导学生探索全等图形的性质,并通过几何画板等软件工具进行验证,使学生更加直观地理解全等图形的概念。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何的基本概念和性质有所了解。
但是,对于全等图形的定义和判定方法,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生通过实际例子去探索和发现全等图形的性质,从而加深对全等图形的理解。
三. 说教学目标1.理解全等图形的定义和性质。
2.学会使用全等图形解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 说教学重难点1.全等图形的定义和性质。
2.全等图形的判定方法。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过实际例子去探索全等图形的性质。
2.使用几何画板等软件工具,直观地展示全等图形的变换过程。
3.小组讨论,培养学生的合作意识和团队精神。
六. 说教学过程1.导入:通过展示一些实际例子,让学生观察和思考,引出全等图形的概念。
2.探索全等图形的性质:让学生通过实际操作,使用几何画板等软件工具,探索全等图形的性质。
3.讲解全等图形的判定方法:通过讲解和示例,让学生理解和掌握全等图形的判定方法。
4.应用全等图形解决实际问题:让学生通过练习题,运用全等图形解决实际问题。
5.总结和反思:让学生总结本节课所学的知识和方法,并进行反思。
七. 说板书设计板书设计要简洁明了,突出全等图形的定义和性质。
可以采用流程图、图示等直观的形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况和练习题的正确率等方面进行。
13.2 全等图形-冀教版八年级数学上册教案一、教学内容本节课主要讲解全等图形的概念、性质以及应用。
具体内容如下:1.全等图形的定义;2.全等图形的性质;3.判断两个图形是否全等的方法;4.利用全等图形解决实际问题。
二、教学目标1.理解全等图形的概念;2.掌握全等图形的性质;3.能够判断两个图形是否全等;4.学会利用全等图形解决实际问题。
三、教学重点1.全等图形的定义;2.全等图形的性质;3.判断两个图形是否全等的方法。
四、教学难点1.利用全等图形解决实际问题。
2.判断两个图形是否全等的方法。
1. 导入新知识老师给出两个图形,问学生是否能够准确地判断这两个图形是否全等,并引出全等图形的定义。
2. 概念讲解1.老师讲解全等图形的定义:两个图形的形状完全相同,大小也完全相同,那么这两个图形就是全等的。
2.讲解全等图形的性质:全等图形的对应边和对应角相等。
3. 判断两个图形是否全等的方法1.SSS准则:当两个三角形的三条边分别相等时,这两个三角形全等。
2.SAS准则:当两个三角形的两条边和夹角分别相等时,这两个三角形全等。
3.ASA准则:当两个三角形的一条边和两个夹角分别相等时,这两个三角形全等。
4.RHS准则:当两个直角三角形的斜边和一个直角边分别相等时,这两个直角三角形全等。
4. 应用讲解1.老师出示实际问题并引导学生利用全等图形解决实际问题。
2.让学生找出问题中的两个图形是否全等,并根据全等图形的性质求出答案。
5. 练习在教师的指导下,让学生独立进行练习,以巩固所学知识。
六、教学总结总结全等图形的概念、性质、判断方法以及应用,并检查学生对于该部分知识点的掌握情况。
1.学生独立完成练习的情况;2.学生对于全等图形的概念、性质、判断方法以及应用的理解程度;3.学生在应用全等图形解决实际问题时的思维能力和解题能力。
全等图形的教学设计
【教材分析】
本节课是在学生掌握了三角形有关知识的基础上,重点研究了全等三角形的有关概念、表示方法及对应部分的关系。
由于三角形是最基本的几何图形之一,所以理解和掌握全等三角形的有关概念是今后学习全等三角形的判定和应用的预备知识,还是证明角相等,线段相等的主要途径,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用.
【教学目标】
1、知识和技能目标:
1)理解全等形、全等三角形的概念及全等三角形表示方法;
2)会寻找全等三角形的对应边、对应角和对应顶点;
3)掌握全等三角形的性质,并能进行简单的推理和计算,能解决一些实际问题.
2.过程和方法目标:
1)通过全等三角形的有关概念的学习,提高学生数学概念的辨析能力;
2)通过找出全等三角形的对应元素,培养学生的识图能力.
3.情感和价值目标:
1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
2)联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.
2.教学重点
全等三角形的有关概念及其性质.
3.教学难点
三角形全等的表示方法与对应部分的关系.
【教法分析】
主要采用引导探究法,实验法.图形变换法
【学法分析】
新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动、勇于探索的学习方式,因此本节课主要采用动手实践、自主探索与合作交流的学习方式,自觉实现知识的建构,促进学生全面发展.
教学过程:。
word
13.2全等图形
┃教学过程设计┃
角是.
(2)如图,△ABC≌△ACE,∠B=∠C,则另外两对对应相等的角是,;BD的对应边是,AD的对应边是,AB的对应边是.
四、课堂小结,提炼观点
教师引导学生对本节课小结,对不完整的地方给予补充.
学生自我总结本节课所学内容并互相补充.
提高学生的总结归纳能力和语言表达能力,体现合作学习的作用.
五、布置作业,巩固提升
教材37页“习题”.
【板书设计】
全等图形
一、全等图形的概念
能够完全重合的图形叫做全等图形. 二、全等三角形的性质
全等三角形的对应边相等,对应角相等.。
第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。
冀教版数学八年级上册《13.2 全等图形》教学设计4一. 教材分析冀教版数学八年级上册《13.2 全等图形》是学生在掌握了平面几何基本概念和性质的基础上,进一步研究图形的形状和大小完全相同的一节内容。
全等图形是几何学中的重要概念,它对于学生理解和掌握几何学的基本定理和证明方法有着重要的意义。
本节课的内容包括全等图形的定义、全等图形的性质和全等图形的判定。
在教学过程中,通过观察、操作、探究等活动,使学生能够理解和掌握全等图形的概念和性质,并能够运用全等图形的判定方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念和性质,具备了一定的观察和操作能力,能够通过观察和操作解决一些简单的几何问题。
但是,对于全等图形的概念和性质的理解,以及全等图形的判定方法的掌握还需要进一步的引导和培养。
因此,在教学过程中,需要根据学生的实际情况,设计适当的教学活动,引导学生通过观察、操作、探究等方式,理解和掌握全等图形的概念和性质,并能够运用全等图形的判定方法解决实际问题。
三. 教学目标1.理解全等图形的概念,掌握全等图形的性质。
2.学会运用全等图形的判定方法解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.全等图形的概念和性质的理解。
2.全等图形的判定方法的掌握。
五. 教学方法1.观察法:通过观察图形,引导学生发现全等图形的性质和判定方法。
2.操作法:通过实际操作,使学生理解和掌握全等图形的性质和判定方法。
3.问题解决法:设计一些实际问题,引导学生运用全等图形的判定方法解决。
六. 教学准备1.准备一些全等图形的实物模型或图片,用于引导学生观察和操作。
2.准备一些全等图形的判定方法的案例,用于引导学生分析和解决问题。
七. 教学过程1.导入(5分钟)通过展示一些全等图形的实物模型或图片,引导学生观察并提问:“这些图形有什么特点?它们之间有什么关系?”从而引出全等图形的概念。
冀教版数学八年级上册13.2《全等图形》教学设计一. 教材分析冀教版数学八年级上册13.2《全等图形》是全等三角形一章的重要组成部分,主要介绍全等图形的概念、性质和判定方法。
本节课的内容对于学生理解全等三角形的性质和判定方法,以及在全等三角形的基础上进一步研究相似三角形、解三角形等问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的概念和性质,能够识别和判断相似图形。
同时,学生已经学习了三角形的基本概念和性质,具备了一定的几何思维能力。
但是,学生对于全等图形的概念和性质可能较为陌生,需要通过实例和操作来加深理解。
三. 教学目标1.理解全等图形的概念和性质;2.学会判断两个三角形是否全等;3.能够运用全等三角形的性质解决实际问题。
四. 教学重难点1.全等图形的概念和性质;2.判断两个三角形是否全等的方法。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等方式探索全等图形的性质和判定方法;2.利用多媒体和实物模型,直观展示全等图形的概念和性质;3.学生进行小组讨论和合作交流,培养学生的团队协作能力和几何思维能力。
六. 教学准备1.多媒体教学设备;2.实物模型和图片;3.练习题和测试题;4.教学课件。
七. 教学过程1.导入(5分钟)通过展示一些生活中的全等图形实例,如两只完全相同的骰子、一对完全相同的钥匙等,引导学生观察和思考:这些图形有什么共同的特点?它们之间有什么关系?从而引出全等图形的概念。
2.呈现(10分钟)利用多媒体课件,呈现全等图形的概念和性质,引导学生观察和思考:全等图形有什么性质?如何判断两个图形是否全等?同时,给出判断两个三角形是否全等的方法。
3.操练(10分钟)学生进行小组讨论和合作交流,让学生运用全等图形的性质和判定方法解决实际问题。
如:给出一组三角形,让学生判断它们是否全等。
4.巩固(10分钟)利用多媒体课件,呈现一些巩固全等图形概念和性质的练习题,让学生独立完成。
13.2 全等图形一、教学目标理解全等图形的概念,识别全等图形的对应点、对应边和对应角。
二、知识点梳理1、全等图形我们把能够完全重合的两个图形叫做全等图形。
两个全等图形重合时,互相重合的点叫做对应点,互相重合的线段叫做对应线段,互相重合的角叫做对应角。
(1)全等图形的形状相同,大小相等。
(2)两个图形是否全等与它们的位置和方向无关。
2、全等三角形及其性质(1)①定义:能够完全重合的两个三角形叫做全等三角形。
②表示方法:如图所示,△ABC和△A´B´C´完全重合,因此它们是全等的,我们用符号“≌”来表示全等,记作“△ABC≌△A´B´C´”,读作“三角形ABC全等于三角形A´B´C´”注意:在写两个三角形全等时,应该把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角。
如△ABC与△A´B´C´,点A与点A´,点B与点B´,点C与点C´是对应颠倒,记作△ABC≌△A´B´C´,而不要写成△ABC≌△B´C´A´。
(2)全等三角形的性质:全等三角形的对应边相等,对应角相等。
如图所示,△ABC≌△A´B´C´,则有对应角相等:∠A=∠A´,∠B=∠B´,∠C=∠C´;对应边相等:AB=A´B´,AC=A´C´,BC=B´C´。
拓展:全等三角形对应中线;对应高;对应角平分线;对应周长;对应面积都相等。
三、典型例题讲解例1 观察图13-2-1中的各个图形,指出其中的全等图形。
例2如图13-2-2,△ABC与△ADE全等,写出其对应顶点、对应边和对应角。
例3如果△ABC≌△DEF,△DEF的周长是32 cm,DE=9 cm,EF=12 cm。
13.2 全等图形-冀教版八年级数学上册教案1. 课程目标本节课要求学生掌握以下知识:1.全等图形的判定条件;2.利用全等图形判定条件解决简单几何问题。
2. 教学重难点本节课的教学重点是全等图形的判定条件,教学难点是在解决几何问题时正确运用全等图形的判定条件。
3. 教学步骤3.1 自主探究1.展示两张图形,让学生观察两个图形之间的关系,引导学生尝试找出两张图形相等的特点。
2.让学生自己比较两个图形的各项特性——如边长、内角度数、形状等,寻找两个图形相等的规律。
3.2 知识总结1.引导学生总结出全等图形的判定条件,即SAS、ASA、SSS、SAA四种判定条件。
2.让学生理解每种判定条件的具体含义,并大声朗读每种判定条件的名称和内涵。
3.3 课堂练习1.在黑板上呈现一些各种形状的图形,让学生分辨哪些是全等图形,并合理解释答案。
2.针对具体的几何问题,让学生使用全等图形的判定条件求解。
3.4 拓展练习1.分组让学生共同解决课本中的练习题,加深对全等图形判定条件的掌握。
2.让学生设计一些新的练习,以检验自己对全等图形判定条件的掌握程度。
4. 课后作业1.完成相应的练习题,并根据课上的讲解整理笔记,加深对全等图形判定条件的理解。
5. 教学反思1.本节课有效的利用了自主探究和课堂练习等方式,提高了学生的参与度和积极性。
2.在知识总结环节中,结合讲解和学生实际操作,提高了学生记忆和理解全等图形判定条件的程度。
3.对于部分学生而言,掌握全等图形判定条件的难度较大,需要引导和帮助。
因此,要持续关注学生的学习状态,积极给予帮助和指导。
13.2全等图形教学目标【知识与能力】1.了解全等图形以及全等图形的对应点、对应线段、对应角.2.了解全等三角形,知道全等三角形的对应边相等,对应角也相等.【过程与方法】通过观察图形,找到全等三角形的对应边、对应角,利用全等三角形对应边相等,对应角相等的性质进行简单的推理和计算.【情感态度价值观】培养学生的观察和动手能力,发展学生的几何观念.教学重难点【教学重点】掌握全等三角形的对应边相等、对应角相等的性质.【教学难点】用全等三角形的性质进行简单的推理和计算.课前准备多媒体课件教学过程一、新课导入:导入一:1.做一做:指导学生画边长为4 cm的等边三角形和边长为4 cm的正方形,并将它们剪下来.2.交流讨论:同桌两人为一组,将剪下的图形放在一块,观察重合情况.3.得出结论:两个三角形完全重合,两个正方形完全重合.4.出示教材第35页图13-2-1中(1)(4)(5),及思考“观察与思考”中的两个问题.5.如图所示,找出图中全等的图形:和全等.6.学生画三边长分别为 4 cm、5 cm、6 cm的三角形,剪下后两人一组放在一起,观察讨论,两个三角形是否全等?[设计意图]让学生观察图形,对图形有一个感性的认识.通过学生的动手操作,感知图形的全等,培养学生的操作能力.导入二:【课件1】教师出示图片观察思考:如图所示,每组的两个图形有什么特点?教师多媒体演示,实际操作把每组的两个图形沿同一水平方向平移使每组中的两个图形叠放在一起.学生讨论.生1:每组的两个图形大小都一样.生2:每组的两个图形都可以重合.师:同学们的观察力很棒,上面的两组图形,每组中的两个图形能够完全重合.那么现实生活中还有哪些能够完全重合的图形的例子呢?学生举例.师:很好,我们今天就来学习全等图形的相关知识(板书课题).[设计意图]通过简单的生活图例和教师的演示,导出本节课的教学内容,有利于提高学生学习的积极性.导入三:如图所示,正方形网格中有12棵树,请你把这个正方形网格划分为四小块,要求每块的形状、大小都相同,并且每块中恰好有三棵树.要想划分相等的几部分,就需要用到全等的有关知识,也就是我们今天要学习的内容.[设计意图]通过问题情境的设计,激发学生对全等知识的探究欲望,从而积极地投入到本节课的教学中.二、新知构建:探究一:全等图形的概念思路一师:我们把能够完全重合的两个图形叫做全等图形.【课件2】观察下面两组图形,它们是不是全等图形?并指出它们的相同点与不同点.学生观察讨论.生:它们不是全等图形.师:为什么?生:在图(1)里的两个图形都是八边形,但是它们的大小不相等.在图(2)中的两个图形都是由三个大小相同的小正方形组合而成的,它们的大小相等,但形状不相同.师:回答得很好,这位同学不仅观察力很棒,并且语言组织能力也很强.同学们也要像他一样不仅要善于观察更要善于总结.如果上面两组图形不是全等图形,那么全等图形有什么样的特征呢?生:全等图形的形状、大小都相同.师:全等图形的形状、大小都相同.当两个全等的图形重合时,互相重合的点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角.【课件3】观察下面的全等图形,找出图形的对应边、对应点和对应角.[设计意图]理解和掌握全等图形的定义,明确全等图形必须具备的条件:一是形状相同;二是大小相等.另外通过练习让学生明确两个全等图形点、角、边的对应关系.思路二师:我们身边经常看到“一模一样”的图形,比如两张由同一底片冲印出来的完全相同的照片,用两张纸重叠在一起剪出的两张窗花等,你还能举一些这样的“一模一样”的例子吗?问题:几何中,我们把上面所列举的“一模一样”的图形叫做“全等图形”,那么我们怎么给“全等图形”下一个几何定义呢?是:(1)形状相同的两个图形?(2)大小相等的两个图形?(3)能够完全重合的两个图形?讨论结果:能够完全重合的两个图形叫全等图形.【课件4】(1)你能把如图(a)所示的长方形分成2个全等图形吗?把如图(b)所示的等边三角形分成3个全等三角形吗?把如图(c)所示的长方形分成4个全等三角形吗?(2)你会把下图(d)和(f)分别分成四个全等的图形吗?试一试.(保留你画的痕迹)指导学生小组讨论完成.说明:当两个全等的图形重合时,互相重合的点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角.[知识拓展]两个全等图形,它们的形状和大小应该是完全相同的,缺一不可.两个全等图形与它们的相对位置无关.全等多边形是全等图形的特例,所以如果两个全等多边形能够达到重合状态,那么它们重合的边(对应边)、重合的角(对应角)分别相等.探究二:全等三角形1全等三角形的性质的探究思路一1.全等三角形的定义及性质(1)定义:全等三角形是能够完全重合的两个三角形,是形状相同、大小相等的两个三角形.(2)反例:举出不全等的三角形的例子,利用教师和学生手中的含有30度角的三角板说明只满足形状相同的两个图形不是全等图形,强调定义的条件.师:请同学们观察周围有没有能完全重合的两个平面图形?学生在生活中找图形.(3)对应元素及性质:教师结合手中的教具说明全等三角形的对应边、对应角、对应顶点,引导学生发现全等三角形的对应边相等,对应角相等.2.学习全等三角形的表示符号解释“≌”的含义及读法,并强调对应顶点写在对应位置上.举例说明:如图所示,∵ΔABC≌ΔDFE(已知),∴AB=DF,AC=DE,BC=FE(全等三角形的对应边相等),∠A=∠D,∠B=∠F,∠C=∠E(全等三角形的对应角相等).教师小结:在书写全等三角形时,如果将对应顶点写在对应位置上,那么将两个三角形的顶点同时按顺序轮换,可写出所有对应边和对应角相等的式子,而不会找错,并节省观察图形的时间.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.思路二学生动手制作,先做一个三角形,然后将做好的三角形按在纸上沿它的各边做第二个三角形.师:与学生交流,做好的同学试着把你们手中的两个三角形叠放在一起看看,它们会怎样?生:完全重合.师:嗯,对.我们把能够完全重合的两个三角形叫做全等三角形.【课件5】出示将ΔABC沿直线平移后得到的ΔA'B'C'(如图所示).师:现在请同学们认真观察并指出图中的对应顶点、对应边、对应角.学生小组讨论后得出:对应顶点是A和A',B和B',C和C'.对应边是AB和A'B',BC和B'C',AC和A'C'.对应角是∠A和∠A',∠B和∠A'B'C',∠C和∠C'.师:ΔABC与ΔA'B'C'全等记作ΔABC≌ΔA'B'C'.想一想:全等三角形的对应边有什么关系?对应角有什么关系?生:全等三角形的对应边相等、对应角相等.师:非常准确,这就是全等三角形的性质.知道两三角形全等,那么我们就可以得出以上结论,三组对应边分别相等,三组对应角分别相等.可是在找全等三角形的对应元素时,一般有什么规律呢?教师多媒体出示【课件6】有公共边的,公共边是对应边.有公共角的,公共角是对应角.有对顶角的,对顶角是对应角.在两个全等的三角形中:一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角.[设计意图]通过教师的多媒体演示和学生的观察学习及小组的合作交流,认识全等三角形的性质.2.例题讲解【课件7】已知:如图所示,ΔABC≌ΔDEF,∠A=78°,∠B=35°,BC=18.(1)写出ΔABC和ΔDEF的对应边和对应角.(2)求∠F的度数和边EF的长.让学生说出对应边和对应角.引导学生分析:∠F的对应角是∠ACB,可先根据三角形内角和定理求出∠ACB的度数.[设计意图]通过例题的讲解,使学生进一步掌握全等三角形的性质,并能熟练应用性质解决相关问题,培养学生分析问题和解决问题的能力.三、课堂小结:1.全等图形:能够完全重合的两个图形叫做全等图形,这里的重合是指完全重合,这里的全等不等同于相等,全等指两个图形完全重合,而相等是对两个量而言,可以是长度、重量,也可以是面积、体积.2.全等三角形的对应边相等,对应角相等,这些性质是探讨全等三角形的基础,也是今后探索其他较复杂图形的性质的重要依据.在利用全等三角形的性质进行计算和证明时,要注意对应元素相等.。
《13.2全等图形》
“图形的全等”是 “认识三角形”之后的一个学习内容,
在《全等三角形》这一章(图形的全等——全等三角形——探索三角形全等的条件——作三角形——利用三角形全等测距离——探索直角三角形全等的条件)中起着承上启下的作用。
图形的全等是从学生生活周围熟悉的物体入手,使学生在丰富的现实情境中,在实际动手操作中,认识图形的全等的一些性质;通过学生的观察、操作、想象、交流等活动,使学生进一步了解图形全等的意义,了解全等图形的特征。
更重要的是让学生通过观察、思考和亲自动手操作,提高学生对图形
的分析能力,不断发展学生的空间观念,同时也为“探索三角形全等的条件”打下基础。
【知识与能力目标】
1、知道什么是全等形、全等三角形及全等三角形的对应元素;
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3、能熟练找出两个全等三角形的对应角、对应边.
【过程与方法目标】
通过观察图形,找到全等三角形的对应边、对应角,利用全等三角形对应边相等,对应角相等的性质进行简单的推理和计算.
【情感态度价值观目标】
培养学生的观察和动手能力,发展学生的几何观念。
【教学重点】
掌握全等三角形的对应边相等、对应角相等的性质。
【教学难点】
用全等三角形的性质进行简单的推理和计算。
多媒体课件
一、创设情境
1、欣赏图片
摩里茨·科奈里斯·埃舍尔,荷兰图形艺术家。
他把自己称为一个“图形艺术家”,他以其源自数学灵感的木刻、版画等作品而闻名。
在1956年举办的历次画展得到了许多数学家的称赏,在他的作品中数学的原则和思想得到了非同寻常的形象化。
2、观察:
如图所示,每组的两个图形有什么特点?
二、探究新知
1、获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.
2、画一画:
做一个三角形,然后将做好的三角形按在纸上沿它的各边做第二个三角形.把两个三角形叠放在一起看看,它们会怎样?
3、谈一谈
1).两条能够完全重合的线段有什么关系?
2.)两条能够完全重合的角解有什么关系?
3.)两个全等三角形的对应边之间有什么关系?对应角之间双有什么关系?。