3500中厚板轧机轧制力数学模型的研究
- 格式:pdf
- 大小:174.01 KB
- 文档页数:3
中厚板轧制中间冷却过程控制模型研究与应用的开题报告1. 研究背景中厚板是一种重要的钢材产品,在船舶、桥梁、建筑等领域得到广泛应用。
中厚板的轧制过程中,中间冷却过程对最终的产品性能有重要影响。
因此,对中厚板轧制中间冷却过程进行控制,能够有效提高产品的质量和产量,降低生产成本。
2. 研究目的本文旨在研究中厚板轧制中间冷却过程控制模型,通过建立数学模型和开展仿真分析,探索中间冷却过程中的温度、应力、变形等因素对产品质量的影响规律,为工业生产提供参考和指导。
3. 研究内容(1)中厚板轧制中间冷却过程控制现状及存在问题的分析;(2)中厚板轧制中间冷却过程数学模型的建立;(3)模型参数的确定和优化;(4)数值模拟及实验验证;(5)模型应用于工业生产并实现控制。
4. 研究方法(1)参考国内外文献资料并进行文献综述;(2)根据已有研究成果,建立控制模型;(3)利用实验数据进行模型的参数优化;(4)采用数值仿真方法,验证模型的准确性和有效性;(5)将模型应用于工业生产,并对实际效果进行评估。
5. 研究意义(1)为中厚板轧制中间冷却过程控制提供一种新的方法;(2)为工业制造提高质量、产量、降低成本提供技术支持;(3)丰富相关学科领域的研究内容;(4)为相关企业提供技术支持和指导,增强其在市场竞争中的竞争力。
6. 预期成果(1)建立中厚板轧制中间冷却过程控制数学模型;(2)确定模型参数;(3)通过数值模拟验证模型的有效性;(4)将模型应用于工业生产,并实现控制。
7. 研究进展目前,对中厚板轧制中间冷却过程控制模型的研究还处于初级阶段,国内外尚未有较为系统和成熟的研究成果。
我们将在充分文献综述的基础上,利用实验数据和数值仿真进行模型的建立和验证,并预计在六个月内完成中期报告,一年内完成论文的撰写和答辩。
《铝热连轧机轧制力预报及模型自学习》篇一摘要:本文主要研究铝热连轧机在生产过程中轧制力的预报以及模型自学习的技术应用。
首先对铝热连轧机及其轧制力的相关背景进行了阐述,随后通过建立数学模型,分析轧制力与工艺参数之间的关系,并探讨了模型自学习的实现方法。
最后,通过实验验证了模型的有效性和实用性。
一、引言随着现代工业技术的不断发展,铝热连轧机作为金属材料加工的重要设备,其生产效率和产品质量对企业的经济效益和市场竞争能力具有重要影响。
轧制力作为铝热连轧机生产过程中的关键参数,其预报和控制对于提高产品质量和降低生产成本具有重要意义。
因此,研究铝热连轧机轧制力预报及模型自学习技术具有重要的理论价值和实践意义。
二、铝热连轧机及轧制力概述铝热连轧机是一种用于铝材连续轧制的设备,其工作原理是通过连续轧制使金属材料变形,以达到所需的尺寸和形状。
轧制力是铝热连轧机在轧制过程中对金属材料施加的力,其大小直接影响产品的尺寸精度和表面质量。
因此,准确预报和控制轧制力对于提高产品质量和降低生产成本具有重要意义。
三、轧制力预报模型的建立为了准确预报铝热连轧机的轧制力,需要建立相应的数学模型。
该模型应考虑轧制过程中的多种因素,如金属材料的性质、轧辊的形状和尺寸、轧制速度等。
通过分析这些因素对轧制力的影响,可以建立以这些因素为输入、轧制力为输出的数学模型。
此外,为了使模型更加准确,还需要考虑温度、摩擦等影响因素。
四、模型自学习技术的研究为了提高模型的预测精度和适应性,需要引入模型自学习技术。
该技术通过收集实际生产过程中的数据,对模型进行不断的学习和优化,使其能够适应不同的生产条件和工艺参数。
具体而言,可以通过神经网络、支持向量机等机器学习算法实现模型的自学习。
在自学习过程中,需要不断调整模型的参数和结构,以使其能够更好地适应实际生产情况。
五、实验验证及结果分析为了验证模型的有效性和实用性,我们进行了大量的实验。
实验结果表明,建立的数学模型能够较好地预测铝热连轧机的轧制力,且预测精度随着自学习过程的进行而不断提高。
轧制力的计算范文轧制力是指在金属轧制过程中,金属带材或板材所受到的压力。
轧制力的计算非常重要,它能够帮助我们预测并控制轧制过程中的变形和应变,以获得所需的产品质量。
下面将详细介绍轧制力的计算方法。
1.塑性力学方法:在轧制过程中,金属材料会发生变形,塑性力学方法通过考虑材料的弹性、塑性和流变行为,从宏观和微观两个角度对轧制力进行计算。
宏观力学方法的基本假设是轧制过程中金属材料的体积守恒。
根据这个假设,轧制力可以通过以下公式进行计算:F=σ×A其中,F是轧制力,σ是金属带材或板材在轧制过程中所受到的应力,A是轧制区截面的面积。
金属材料的应力可以通过以下公式进行计算:σ=K×ε^n其中,K是比例常数,ε是真应变(真实变形),n是流变指数。
这些参数可以通过实验和理论分析来确定。
微观力学方法考虑了金属材料的结晶学和滑移机制。
它使用了位错理论和格点模型来计算轧制力。
这种方法需要对材料的晶体结构和力学性质进行深入研究和分析。
2.能量方法:能量方法的基本假设是轧制力是使金属材料的能量损失等于所用的能量传递速率的比例常数。
根据这个假设,轧制力可以通过以下公式进行计算:F=ΔE/Δt其中,ΔE是金属材料在轧制过程中的能量损失,Δt是时间。
能量损失可以通过测量轧制区的温度变化来计算,或者使用热力学和热传导理论进行估计。
需要注意的是,轧制力的计算方法多种多样,不同的金属材料和轧制过程可能需要不同的计算方法。
此外,实际的轧制力还受到很多其他因素的影响,如润滑条件、辊形状、辊缩径等。
总结起来,轧制力的计算是金属轧制过程中的重要问题。
通过正确地计算轧制力,我们能够更好地控制产品的变形和应变,提高产品的质量。
同时,轧制力的计算也为轧制设备的设计和优化提供了重要的理论依据。
4数学模型轧制过程设定是根据中厚板轧线设备布置、检测仪表布置和过程控制系统的组成,针对不同规格的坯料和成品要求,合理地安排轧制道次,实时地计算轧机的辊缝、咬钢速度、稳定轧制速度、抛钢速度、待温时间和轧制节奏,确保最终产品的尺寸精度和力学性能。
一般的轧制过程设定包括:预设定、阶段修正设定、道次修正设定和自学习计算等几部分。
为了准确地进行过程设定,需要结合轧制理论和大量实践,建立合理的数学模型。
中厚板轧制过程非常复杂,涉及工艺控制、厚度控制、板形控制、温度控制等方面,是一个多目标优化系统。
为了保证数学模型的计算精度,首先必须在结构上保证模型的完备性,其次需要结合自学习算法和细化层别等手段再弥补模型精度上的不足。
实际建模过程中,应以理论为指导,结合现场实际和操作经验,因地制宜、因厂而异地建立具有自己特色的数学模型。
下面以工艺控制、厚度控制、板形控制、温度控制过程为对象,介绍钢板轧制过程中的轧制力模型、弹跳模型、温度模型和板凸度模型等主要数学模型。
4.1轧制力模型中厚板轧制过程中,精轧道次产生的宽展较小,近似于平面变形轧制,其宽展量可以忽略不计。
因此轧制力计算可采用Sims 公式:1.15P F σ= (4-1)式中F ——轧制力;W 一轧件宽度;R ′——考虑弹性压扁的轧辊半径;△h ——压下量;Q p ——应力状态影响函数;σ——平均变形抗力。
4.1.1轧辊压扁半径的影响轧辊表面受到轧制力的作用而产生压扁,使得接触弧长度增大,导致轧制力的增加。
其变化量一般在2%~3%左右,所以在计算轧制力时必须考虑轧辊压扁的影响。
计算弹性压扁时,采用Hitchcock 公式的简化形式:'01CF R R hW ⎛⎫=+ ⎪∆⎝⎭(4-2) ()222161 2.210/C mm kN E υπ--==⨯式中R 0——轧辊初始半径;υ——轧件?白松比,近似等于0.3;E ——轧辊弹性模量。
在计算轧辊压扁半径时,需要预先知道轧制力的大小,而轧制力在得到最终计算结果之前是未知的。
《铝热连轧机轧制力预报及模型自学习》篇一一、引言铝热连轧机作为现代金属材料加工的重要设备,其轧制力的准确预报和模型自学习能力的研究,对于提高产品质量、优化生产流程以及降低生产成本具有重要意义。
本文旨在探讨铝热连轧机轧制力的预报方法以及模型自学习的应用,以期为相关领域的研发和实践提供有益的参考。
二、铝热连轧机轧制力预报1. 影响因素分析铝热连轧机轧制力受多种因素影响,包括原料性质、轧辊参数、轧制速度、温度等。
这些因素相互关联,对轧制力的变化产生直接影响。
因此,准确分析这些因素,是进行轧制力预报的前提。
2. 预报模型构建基于影响因素分析,可以构建轧制力预报模型。
该模型应包括原料性质、轧辊参数、轧制速度、温度等变量的输入,以及轧制力的输出。
通过大量实验数据的训练和优化,可以提高模型的预测精度。
3. 预报方法及实施预报方法包括理论计算和数值模拟两种。
理论计算基于材料力学、塑性力学等理论,通过建立数学模型进行计算。
数值模拟则利用有限元分析等方法,对实际生产过程进行模拟。
在实际应用中,应结合两种方法,互相验证,提高预报精度。
三、模型自学习1. 自学习原理模型自学习是指模型在应用过程中,能够根据实际生产数据自动调整参数,以提高预测精度。
这需要模型具备一定的学习能力,能够从错误中吸取教训,不断优化自身。
2. 自学习方法自学习方法包括在线学习和离线学习两种。
在线学习是在生产过程中,实时收集数据,对模型参数进行调整。
离线学习则是利用历史数据,对模型进行离线优化。
两种方法可以相互补充,提高模型的自学习能力。
3. 自学习应用模型自学习在铝热连轧机中的应用,可以提高生产效率、降低成本、提高产品质量。
通过自学习,模型能够根据实际生产情况自动调整参数,使生产过程更加优化。
同时,自学习还能帮助企业实现智能化生产,提高企业的竞争力。
四、实践应用及效果铝热连轧机轧制力预报及模型自学习的实践应用已在多家企业得到实施。
通过实际应用,企业提高了生产效率、降低了成本、提高了产品质量。
2002年6月北京H硬大罕罕嫩Jour曲JofuⅡivers姆ofscienceand1hhnologyBciji“g、m1.24—0.jJuⅡ.20022800mm中厚板轧机轧制力模型研究戴江波”张清东”陈先霖”孙林2’张光新。
张晨1)北京科技大学机械l程学院,北京时间1000832)武汉钢铁(鬟纠)公nJ武汝4]00H,摘要在考虑温度场埘轧制力能参数影响的条件卜.利用ANsYs软什对热轧机带的塑阡变形过程进jrr/』能参数的计算.并巾此获得2800mm轧机轧制压力的计算模删经仃武钢2800mm轧机生产现场实洲大量数据.进・步完善轧制/J模型.使之具有良好的汁算精幢关譬词巾厚钢板:轧制力.横型分类号7G33512A轧制,J对于各类轧机都是非常重要的参数,它广泛应用于轧机机械设备的强度设计与校核,同时又是制定J:岂制度、调整轧机,以及强化轧制以扩大产品范围和充分合理地挖掘设备潜力的重要原始参数.在计算机控制技术中,轧制力模型对卜轧机辊缝没定、负荷分配、厚渊系统的增益系数确定、最优控制具有很重要作用.轧制力模型的顶报精度直接影响设定精度.它对厚度精度和板形质量产牛直接影响.本文利用ANsYs软件对2800mm轧机轧制力进行计算,得到相应的汁算模刑1轧制力计算理论模型由于单位压力在接触弧上的分布是小均匀的,为便丁计算,-般均以单位压力的平均值——平均单位乐力束计算总轧制力.、F均单位睚力“可写成下列一般形式:P.=n^二,?,。
H,。
H,^(1)拧l15露f21式中∽为虚力状态影响系数;‰为摩擦对应力状态的影响系数;%为考虑外区对应力状态的影响系数;‰为考虑张力对应力状态的影响系数;露材料变形阻力轧件变形阻力不仅与金届材料的化学成分有关.而且还取决于塑性变形的物理条件”1(变形温度、变形速度与变形程度)在变形阻力研究中都采用“F函数形式:收稿H期!uul1210戴江波胃.39岁,l程师博士生★目家自然科学基金资助【粜题{No5983517{J)K=厂(一“.P)(3)式中,7'为变形热,J学温度,K:“为变形速度.s。
1轧制过程数学模型1.1轧制工艺参数模型随着科学技术的发展,计算机已广泛应用于轧钢生产过程的控制,促使轧钢生产向自动化、高速和优质方向发展。
电子计算机在线控制生产过程,不仅仅只是电子计算机本身的硬件和软件的作用,更重要的是控制系统和各种各样的数学模型,正因为有适合轧钢生产的各种数学模型,才有可能实现电子计算机对整个轧钢生产各个环节的控制,获得高精度的产品。
线材连轧生产过程的主要内容基本上可归纳为尺寸变化和温度变化两大类性质极不相同但又相互紧密联系的物理过程,涉及的数学模型主要是轧制工艺参数的制定、各环节的温降变化、产品质量控制及实现线材连轧生产的可靠性等。
在线材连轧生产过程中,准确地计算(预估)各个环节的温度变化是实现计算机控制的重要前提,这是因为轧件各道次的变形阻力、轧制压力、轧制力矩的准确确定与温度是分不开的,而各机架轧制压力的预估精度将直接关系到设备的使用安全等。
下面分别讨论线材连轧生产过程中的温降模型、变形阻力模型、轧制力与轧制力矩模型。
1.1.1延伸系数及孔型尺寸计算模型在制订棒线材轧制工艺时,当坯料和产品断面面积F 0和F n 给定之后,总延伸系数∑μ就可唯一确定:nn n i i n i F FF F F F F F F F 011211021===-+∑ μμμμμ 其中:n ——总轧制道次;μi ——某一道次的延伸系数; F i ——某一道次的轧件断面面积。
椭圆孔示意图mB R F +-=)sin (2θθRB 2arcsin2=θ ⎪⎭⎫ ⎝⎛--=2cos 12θR h m对于圆孔,轧件断面面积可通过下式计算:圆孔示意图απθ2-=αθtan 422R R F +=1.1.2前滑模型孔型轧制时的前滑率计算可采用筱篬或斋藤提出的实验模型。
两者都认为前滑仅是轧件、孔型几何尺寸的函数。
斋藤模型以平均工作辊径定义前滑,当道次变形量较小时会出现负前滑的计算结果;筱篬模型改用孔型槽底处的最小辊径定义前滑,即前滑S f 为:S f =V 1/V R -1 (1.1) 其中:V 1 ,V R ——轧件出口速度及孔型槽底处的轧辊线速度。
3500中厚板轧机--轧机毕业设计开题报告燕山大学本科毕业设计(论文)开题报告课题名称:3500中厚板轧机学院(系):机械工程学院年级专业:06级机电3班学生姓名:王瑞超指导教师:牟德君完成日期:2009年3月17日一、综述本课题国内外研究动态,说明选题的依据和意义冶金工业部标准规定:厚度在4毫米以下的钢板称为薄板;厚度在4毫米以上的称为厚板。
我国习惯于将厚度在4~25毫米范围内的钢板成为中板。
在国民经济的各个部门中广泛的采用中板。
它主要用于制造交通运输工具(如汽车、拖拉机、传播、铁路车辆及航空机械等)、钢机构件(如各种贮存容器、锅炉、桥梁及其他工业结构件)、焊管及一般机械制品等。
[1] 中板生产目前均采用热轧。
即将钢胚或钢锭加热后,在轧机中经多道次轧制,轧成一定厚度的钢板。
生产中板的轧机型式很多。
按机架机构分类,可分为二辊式、四辊式、复合式和万能式几种。
按机架布置风雷,可分为单机架、并列式和顺列式等几种。
[1]1.轧钢机的发展初轧机的发展。
初轧机的发展经过了3个阶段,到20世纪70年代初,初轧机的轧辊直径已增大到了1 500 mm。
我国从1959年开始自行设计制造开坯机,目前已制成700mm,750tam,850lnm,1 150mm初轧机。
20世纪80年代以来,连铸技术得到较大的发展,连铸比达到80%甚至更高,连铸连轧工艺和设备也日趋完善,初轧机的职能将逐步转变为配合连铸,弥补连铸在钢种和规格方面的不足。
带钢连轧机的发展。
在所有市场需求的钢材中,板带材占有相当大的比重。
我国于1981年从13本引进1 700mm热连轧机的全套设备。
随后,一大批具有先进生产工艺的热连轧和冷连轧板带厂迅速崛起,。
热连轧机发展的主要特点有:加大带卷和坯料重量,减少切头切尾的损耗,提高产品收得率;采用加速轧制,提高钢材产量;产品规格增加,精度提高;采用计算机控制,提高了自动化水平等。
冷轧钢板的生产成本、投资费用虽然比热轧钢板高,但由于冷轧钢板的性能和质量比热轧好,在同样用途下,可以节约金属材料达30%,故冷轧板生产得到迅速发展。