最新-87微分法的几何应用-PPT文档资料
- 格式:ppt
- 大小:279.01 KB
- 文档页数:22
第六节 微分法在几何上的应用要求:会求空间曲线的切线及法平面方程,会求空间曲面的且平面及法线方程。
重点:空间曲线的切线及法平面方程,曲面切平面及法线方程的求法。
难点:空间曲线的方程组形式给出的情况,求其切线及法平面方程。
作业:习题8-6(52P )4,5,6,9,10一.空间曲线的切线与法平面1.空间曲线由参数方程给出设空间曲线的参数方程为()x t ϕ=,()y t ψ=,)(t w z =,且三个函数均可导. 当0t t =时,对应曲线上的点),,(0000z y x M ,当t t t ∆+=0时,对应曲线上的点),,(000z z y y x x M ∆+∆+∆+',曲线的割线M M '0的方程为zz z y y y x x x ∆-=∆-=∆-000 当M '沿曲线趋于0M 时,割线M M '0的极限位置T M 0就是曲线在点0M 处的切线,其切线方程如何?tz z z t y y y t x x x ∆∆-=∆∆-=∆∆-000 令0M M →'(这时0→∆t ),上式取极限,即得曲线在点0M 处切线方程为000000'()'()()x x y y z z t t w t ϕψ---=='. 说明(1)000'(),'(),()t t w t ϕψ'不能同时为零,如果个别为零,按空间解析几何中有关直线对称式方程的说明理解;(2)切线的方向向量{}000'(),'(),()T t t w t ϕψ'=u r称曲线切向量.切向量的方向余弦为 222cos ('())('())('())t t w t αϕψ=++,222cos ('())('())('())t t w t βϕψ=++,222cos ('())('())('())t t w t γϕψ=++.曲线的法平面通过点0M 而与切线垂直的平面称为曲线在点0M 处的法平面,方程为000000'()()'()()()()0t x x t y y w t z z ϕψ'-+-+-=.例1.求螺旋线θcos a x =,θsin a y =,θb z =对应于3πθ=处的切线和法平面方程.解 曲线上对应于3πθ=的点),,(0000z y x M ,即00023a x y z b π⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩, 切向量{}'(),'(),()T w ϕθψθθ'=ur ,,22a a b ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭,因此切线方程为3222a z bx y a b π---==, 法平面方程为()()()022223a a a x y ab z b π--+-+-=. 切向量的方向余弦为2222222cos sin cos ba b ba a b+=++=θθγ可见曲线的切线与z 轴的夹角(母线的夹角)为定值.2.空间曲线的方程由()y x ϕ=,()z x ψ=给出取x 为参数,它就可表示为参数方程的形式()()x xy x z x ϕψ=⎧⎪=⎨⎪=⎩,若(),()x x ϕψ在0x x =处可导,曲线在点),,(0000z y x M 处的切向量{}001,'(),'()T x x ϕψ=u r,切线方程000001'()'()x x y y z z x x ϕψ---==.法平面方程 00000'()()'()()0x x x y y x z z ϕψ-+-+-=.例2.求曲线mx y 22=,x m z -=2在点),,(000z y x 处的切线及法平面方程.解 因为m y y 22=' ,y m y =', 12-='z z ,zz 21-=', 所以切向量 0011,,2m T y z ⎧⎫=-⎨⎬⎩⎭u r ,切线方程1)(2)(100000--=-=-z z z m y y y x x , 法平面方程 0)(21)(00000=---+-z z z y y y m x x . 3.空间曲线Γ的方程由⎩⎨⎧==0),,(0),,(z y x G z y x F 给出设),,(0000z y x M 是曲线Γ上的一点,又设,F G 对各变量的偏导数连续,且0|),(),(0≠∂∂M z y G F ,此时方程组在点0M 的某邻域内唯一确定一组函数()y x ϕ=,()z x ψ=,求曲线Γ在点0M 处的切线方程及法平面方程.只要求出00'(),'()x x ϕψ,得切向量{}001,'(),'()T x x ϕψ=u r,为此方程(,(),())0(,(),())0F x x xG x x x ϕψϕψ=⎧⎨=⎩, 两边对x 求全导数得⇒⎪⎪⎩⎪⎪⎨⎧=++=++00dx dz G dx dy G G dx dz F dx dy F F z y x z y x x z y x z y G dxdz G dx dy G F dx dz F dx dy F -=+-=+因为0),(),(≠=∂∂=zyzyG G F F z y G F J 所以可解得'()z x zxF FG G dyx dxJϕ== ,'()x y xyF FG G dz x dxJψ==,于是切向量 {}001,,1,'(),'()dy dz T x x dx dx ϕψ⎧⎫==⎨⎬⎩⎭u r . 例3.求曲线0,6222=++=++z y x z y x 在点)1,2,1(-处的切线及法平面方程. 解 下面我们依照推导公式的方法来解,将所给方程两边对x 求导,得⇒⎪⎪⎩⎪⎪⎨⎧=++=++010222dxdz dx dy dx dz z dx dy y x ⎪⎩⎪⎨⎧-=+-=+1dxdz dx dy x dxdz z dx dy y 解方程组,得z y x z z y zx dx dy --=--=1111,z y y x z y x y dx dz --=---=11 于是0|)1,2,1(=-dx dy ,1|)1,2,1(-=-dx dz从而 {}1,0,1T =-u r因此,所求切线方程110211--=+=-z y x ,即⎪⎩⎪⎨⎧=+--=-021111y z x 法平面方程为 0)1()2(0)1(=--++-z y x , 即 0=-z x . 练习:求曲线21,,1t tx y z t t t+===+在对应于1t =的点处的切线及法平面方程. 二.曲面的切平面与法线1.曲面方程由隐式方程0),,(=z y x F 给出设曲面∑方程为0),,(=z y x F ,点),,(0000z y x M 为曲面上的一点,又设函数),,(z y x F 的偏导数在点0M 连续且不同时为零.讨论曲面在点0M 处的切平面,那么曲面在点0M 处切平面指什么? 为此首先考虑这样一个事实:在曲面上过点0M 的任何曲线在0M 的切线位于 同一平面上,下面证明这个事实.在曲面上过点0M 任意引一条曲线Γ,其参数方程为()()()x t y t z w t ϕψ=⎧⎪=⎨⎪=⎩,且000'(),'(),()t t w t ϕψ'不全为零,由于曲线位于曲面上,满足((),(),())0F t t w t ϕψ≡,又因为),,(z y x F 在点0M 处有连续偏导数,且000'(),'(),()t t w t ϕψ'存在,上式的复合函数在0t t =的全导数存在,于是0|0==t t dtdF.即 000000000000(,,)'()(,,)'()(,,)()0x y z F x y z t F x y z t F x y z w t ϕψ'++=.引入向量{}z y x F F F n ,,=ρ.上式表明,曲线Γ在点0M 处的切线向量{}000'(),'(),()T t t w t ϕψ'=u r 与一个确定向量nϖ垂直.因为曲线Γ是曲面上过点0M 的任一条曲线,它们在0M 的切线都与同一个向量n ϖ垂直,所以曲面上过点0M 的一切曲线在点0M 的切线都在同一个平面上,这个平面称为曲面∑在点0M 的切平面,切平面方程为0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x ,曲面∑在点0M 的切平面的法向量{}z y x F F F n ,,=ρ简称为曲面的法向量. 过点0M 且垂直于切平面的直线称为曲面在点0M 的法线,其方程为),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- 例4.求曲面3=+-xy z e z在点)0,1,2(处的切平面方程及法线方程. 解 令=),,(z y x F 3-+-xy z e z,则{}{}1,,,,-==zz y x e x y F F F n ρ,即有{}0,2,1|)0,1,2(=n ϖ, 在点)0,1,2(处切平面方程为 0)0(0)1(2)2(=-+-+-z y x , 即 042=-+y x .法线方程为 002112-=-=-z y x ,即⎪⎩⎪⎨⎧=-=-02112z y x .2.曲面方程由显式方程),(y x f z =给出求曲面),(y x f z =在点),,(0000z y x M 处切平面及法线方程.令z y x f z y x F -=),(),,(,可见),(y x f F x x =,),(y x f F y y =,1-=z F ,则曲面在点0M 处法向量为{}1),,(),,(0000-=y x f y x f n y x ϖ,于是切平面方程为 0000000))(,())(,(z z y y y x f x x y x f y x -=-+-, 法线方程为1),(),(0000000--=-=-z z y x f y y y x f x x y x 说明(1)函数),(y x f z =在点),(00y x 的全微分为))(,())(,(000000y y y x f x x y x f dz y x -+-=,因此切平面方程)()(000y y f x x f z z y x -+-=-表示全微分的几何意义,即曲面),(y x f z =在点0M 处切平面上点的竖坐标的增量(正象一元函数表切线的纵坐标增量). (2)若曲面的切平面的法向量的方向角为γβα,,,并假定向量的方向是向上的(即使得它与z 轴的正向所成的角γ是锐角),则法向量的方向余弦如何求? 若曲面方程为(,)z f x y =,则221cos yx x f f f ++-=α ,221cos yx y f f f ++-=β,2211cos yx f f ++=γ.若曲面方程为(,,)0F x y z =,则cos α=,cos F β=,cos γ=.例5.求旋转抛物面122-+=y x z 在点)4,1,2(0M 处的切平面及法线方程.解 因为1),(22-+=y x y x f ,所以{}{}1,2,21,,-=-=y x f f n y x ϖ,即有{}1,2,4|0-=M n ϖ,于是过点0M 的切平面方程为0)4()1(2)2(4=---+-z y x , 即 0624=--+z y x .法线方程为142142--=-=-z y x . 例6.求椭球面22221x y z ++=上平行于平面02=+-z y x 的切平面方程. 解 因为切平面的法向量为{}z y x n 2,4,2=ϖ,而平面02=+-z y x 法向量为{}'1,1,2n =-u r又因为//'n n u rv ,所以k z y x ==-=2121,将k z k y k x 2,21,=-==代入方程1222=++z y x 中,得1421222=++k k k从中解出112±=k . 于是, 所求点为)1122,11221,112(-及)1122,11221,112(--, 切平面方程为 0)1122(2)11221()112(=-++--z y x , 或 0)1122(2)11221()112(=++--+z y x , 即 02112=±+-z y x . 例7.设曲面S 方程3a xyz =)0(>a ,求曲面S 上任一点),,(000z y x 处切平面方程,并证明曲面S 的所有切平面与坐标面形成的四面体的体积为定值.解 设3),,(a xyz z y x F -=,则yz F x =,xz F y =,xy F z =,所以在点),,(0000z y x M 的切平面方程为0)()()(000000000=-+-+-z z y x y y z x x x z y即 30000003a z y x y z x x z y =++.将其化为截距式1333003003003=++y x a z z x a y z y a x 截距分别为000333x z y a = ,000333y z x a =,000333z y x a =不妨设 0,0,0000>>>z y x , 于是,切平面与三坐标面围成立体体积为⎥⎦⎤⎢⎣⎡⋅=0003)33(2131z y x V 30002929a z y x ==(定值) 思考题1.若曲面由方程),(y x f z =∑:给出,如何求在点),,(000z y x M 的切平面方程? 2.若曲线是两个柱面)(),(x g z x f y ==的交线,如何求在0x x =对应点处的切线方程?。