高一数学人教A版必修一《2.2.2 对数函数及其性质的应用 第二课时》课件
- 格式:ppt
- 大小:621.50 KB
- 文档页数:23
对数函数及其性质教学设计1. 教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式...”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2. 学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。
3. 教学手段本节课我选择计算机辅助教学。
增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.4. 教学流程创设情境获得新知作图察质问题探究归纳性质由“考古问题”引入对数函数定义列表、描点、连线底数a对图象的影响分析归纳函数性质学以致用例题分析解答二、形成概念、获得新知 定义:一般地,我们把函数叫做对数函数。
其中x 是自变量,定义域为例1求下列函数的定义域: (1);(2).解:(1)函数的定义域是。
(2)函数的定义域是。
归纳:形如的的函数的定义域要考虑— 三、探究归纳、总结性质 活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。
选取完成最好、最快的小组,由组长在班内展示。
活动2:小组讨论,对任意的a 值,对数函数图象怎么画? 教师带领学生一起举手,共同画图。
活动3:对a >1时,观察图象,你能发现图象有哪些图形特征吗?然后由学生讨论完成下表左边: 函数的图象特征 函数的性质 图象都位于y 轴的右方 定义域是图象向上向下无限延展 值域是R图象都经过点(1,0)当x=1时,总有y=0log a y x =≠(a>0,且a 1)()0,+∞2log a y x =log (4)a y x =-200x x >∴≠∴2log a y x ={}0x x ≠404x x ->∴<∴log (4)a y x =-{}4x x <log ()a y f x =()0.f x >23log ,log y x y x ==1123log ,log y x y x ==log a y x =log a y x =()0,+∞))注:底数非常数,要分类讨论当a>1时,且3.4<8.50.3log y x =————————————————以下无正文————————————————以上高中数学必修教学课程教案均为word文字可编辑版,如果刚好符合你要求,欢迎下载使用。
第2课时对数函数的性质应用[目标] 1.会利用对数函数的单调性比较两个对数的大小或解对数不等式;2.会求与对数函数有关的函数的最大(小)值或值域;3.能综合应用对数函数的图象和性质解决有关问题.[重点] 对数函数的图象和性质的应用.[难点] 对数函数的图象和性质的综合应用.知识点一对数函数的单调性[填一填]1.对数函数的单调性:当a>1时,y=log a x为增函数,当0<a<1时,y=log a x为减函数.2.对于y=log a x,若a>1,当x>1时,y>0,当0<x<1时,y<0;若0<a<1,当0<x<1时,y>0,当x>1时,y<0.[答一答]1.若a>1,且m>n,则log a m与log a n的大小关系是log a m>log a n.若0<a<1,且m>n,则log a m与log a n的大小关系是log a m<log a n.2.若a>1,且log a m>log a n,则m与n的大小关系是m>n;若0<a<1,且log a m>log a n,则m与n的大小关系是m<n.知识点二复合函数的单调性[填一填]复合函数y=log a f(x),x∈D的单调性:设集合M⊆D,若a>1,且u=f(x)在x∈M上单调递增(减),则集合M对应的区间是函数y=log a f(x)的增(减)区间;若0<a<1,且u=f(x)在x∈M上单调递增(减),则集合M对应的区间是函数y=log a f(x)的减(增)区间.[答一答]3.f(x)=log3(x+5)的单调区间是否只有一个?是否就是y=x+5的单调区间?提示:是只有1个,但不是y=x+5的单调增区间(-∞,+∞),而是(-5,+∞).知识点三 反函数[填一填]函数y =log a x (a >0,且a ≠1)与y =a x (a >0,且a ≠1)互为反函数,其图象关于直线y =x 对称.[答一答]4.指数函数与对数函数有哪些主要的相同点?两种函数之间有哪些关系?提示:(1)底数及其范围相同;(2)a >1时同为增函数,0<a <1时同为减函数;(3)互为反函数,图象关于直线y =x 对称;(4)指数函数的定义域是对数函数的值域,指数函数的值域是对数函数的定义域.类型一 比较大小[例1] 比较下列各组值的大小. (1)log 534与log 543;(2)log 13 2与log 15 2;(3)log 23与log 54.[解] (1)法一:对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,∴log 534<log 543.法二:∵log 534<0,log 543>0,∴log 534<log 543.对数式比较大小的三种类型和求解方法 (1)底数相同时,利用单调性比较大小.(2)底数与真数均不相同时,借助于0或1比较大小.(3)真数相同时,可利用换底公式换成同底,再比较大小,但要注意对数值的正负.[变式训练1] 设a =log 36,b =log 510,c =log 714,则( D ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c解析:由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c ,故选D. 类型二 解对数不等式[例2] (1)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.[分析] 对于(1)“1”变为log a a 讨论单调性;对于(2)直接根据单调性列不等式组求解. [解] (1)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞). (2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.7(2x )<log 0.7(x -1), 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围为(1,+∞).解对数不等式时,要防止定义域扩大,应在解的过程中加上限制条件,使定义域保持不变,即进行同解变形.若非同解变形,最后一定要检验.[变式训练2] 若-1<log a 34<1(a >0,且a ≠1),求实数a 的取值范围.解:∵-1<log a 34<1,∴log a 1a <log a 34<log a a .当a >1时,1a <34<a ,则a >43;当0<a <1时,1a >34>a ,则0<a <34.故实数a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 类型三 对数复合型函数的值域[例3] 求下列函数的值域: (1)y =log 12(-x 2+2x +3);(2)y =log 3⎣⎡⎦⎤⎝⎛⎭⎫13x -2,x ∈[-3,-1]. [分析] 先求出真数的范围,再利用对数函数的单调性求原函数的值域. [解] (1)设u =-x 2+2x +3=-(x -1)2+4≤4, ∵y =log 12 u 在(0,+∞)上是减函数, ∴log 12 (-x 2+2x +3)≥log 12 4=-2.∴函数的值域为[-2,+∞). (2)设u =⎝⎛⎭⎫13x -2,∵x ∈[-3,-1]. ∴3≤⎝⎛⎭⎫13x ≤27,即1≤u ≤25.∵函数y =log 3u 在(0,+∞)上是增函数,∴0≤log 3⎣⎡⎦⎤⎝⎛⎭⎫13x -2≤log 325. ∴原函数的值域为[0,log 325].1.与对数函数有关的复合函数的值域:求与对数函数有关的复合函数的值域,一方面,要抓住对数函数的值域;另一方面,要抓住中间变量的取值范围,利用对数函数的单调性来求其值域(多采用换元法).2.对于形如y =log a f (x )(a >0,且a ≠1)的复合函数的值域的求解的步骤:①分解成y =log a u ,u =f (x )两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.[变式训练3] 设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4.若t =log 2x .(1)求t 的取值范围. (2)求f (x )的值域.解:(1)因为t =log 2x ,14≤x ≤4,所以log 214≤t ≤log 24,即-2≤t ≤2.(2)函数f (x )=log 2(4x )·log 2(2x ),即f (x )=(log 2x )2+3log 2x +2,又t =log 2x , 则y =t 2+3t +2=⎝⎛⎭⎫t +322-14(-2≤t ≤2). 当t =-32时,即log 2x =-32,x =2-32时,f (x )min =-14;当t =2时,即log 2x =2,x =4时,f (x )max =12. 综上可得,函数f (x )的值域为⎣⎡⎦⎤-14,12. 类型四 对数复合型函数的单调性[例4] 已知f (x )=log 12 (x 2-ax -a )在⎝⎛⎭⎫-∞,-12上是增函数,求a 的取值范围. [解] 令u (x )=x 2-ax -a ,∵f (x )=log 12 u (x )在⎝⎛⎭⎫-∞,-12上是增函数,∴u (x )在⎝⎛⎭⎫-∞,-12上是减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立.∴⎩⎨⎧a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0.∴-1≤a ≤12.∴满足条件的a 的取值范围是{a |-1≤a ≤12}.与对数函数有关的复合函数y =log a g (x )的单调性的求解步骤:(1)确定定义域,研究函数的单调区间一定要在函数的定义域上进行.(很多同学忽略了定义域,即要满足g (x )>0导致错误)(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数:外层函数y =log a u ,内层函数u =g (x ).(3)分别确定这两个函数的单调区间.(4)若这两个函数同增或同减,则y =log a g (x )为增函数;若一增一减,则y =log a g (x )为减函数,即“同增异减”.[变式训练4] 已知f (x )=log a (8-3ax )在[-1,2]上是减函数,则实数a 的取值范围是( B )A .(0,1) B.⎝⎛⎭⎫1,43 C.⎣⎡⎭⎫43,4D .(1,+∞)解析:由题意,知8-3ax >0,x ∈[-1,2],∴8+3a >0,8-6a >0,∴-83<a <43.又易知a >0,且a ≠1,∴0<a <1或1<a <43,此时可知函数g (x )=8-3ax 是减函数.若f (x )在[-1,2]上是减函数,则必有a >1.所以实数a 的取值范围为⎝⎛⎭⎫1,43.故选B.1.若0<x <y <1,则下列关系式正确的一组是( D ) A .log 3x >log 3y B .log 12 x <log 12 yC .log x 3<log y 3D .log 4x <log 4y解析:∵y =log 3x 是增函数,∴当x <y 时,log 3x <log 3y .∵y =log 12 x 是减函数,∴当x <y 时,log 12 x >log 12 y .∵log 3x <log 3y <0,∴1log 3y <1log 3x <0.∴log y 3<log x 3.∵y =log 4x 是增函数,且0<x <y <1知log 4x <log 4y . 2.函数y =2x 的反函数是( C ) A .y =log 2x B .y =log 12 xC .y =log 2x (x >0)D .y =log 12x (x >0)解析:函数y =2x 的值域是(0,+∞). 又其反函数为y =log 2x .故选C.3.函数y =log 12 (x 2-6x +17)的值域是(-∞,-3].解析:由x 2-6x +17=(x -3)2+8>0恒成立,知x ∈R .设u =x 2-6x +17.∵0<12<1,∴函数y =log 12 u 是减函数.又∵x 2-6x +17=(x -3)2+8≥8,∴log 12 (x 2-6x +17)≤log 12 8=log 12 23=log 12⎝⎛⎭⎫12-3=-3.故函数y =log 12(x 2-6x +17)的值域为(-∞,-3].4.函数f (x )=ln(3+2x -x 2)的单调递增区间是(-1,1),单调递减区间是(1,3). 解析:∵3+2x -x 2>0,∴x 2-2x -3<0. ∴-1<x <3.令u =3+2x -x 2=-(x 2-2x -3)= -(x -1)2+4,∴当x ∈(-1,1)时,u 是x 的增函数,y 是ln u 的增函数,故函数f (x )=ln(3+2x -x 2)的单调递增区间是(-1,1).同理,函数f (x )=ln(3+2x -x 2)的单调递减区间是(1,3). 5.已知f (x )=log a (a x -1)(a >0,且a ≠1). (1)求f (x )的定义域; (2)讨论函数f (x )的单调性.解:(1)使f (x )=log a (a x -1)有意义,则a x -1>0,即a x >1.当a >1时,x >0;当0<a <1时,x <0,∴当a >1时,函数的定义域为{x |x >0};当0<a <1时,函数的定义域为{x |x <0}.(2)①当a >1时,设0<x 1<x 2,则1<ax 1<ax 2,∴0<ax 1-1<ax 2-1,∴log a (ax 1-1)<log a (ax 2-1),∴f (x 1)<f (x 2),∴当a >1时,函数f (x )在(0,+∞)上为增函数;②当0<a <1时,设x 1<x 2<0,则ax1>ax2>1,∴ax1-1>ax2-1>0,∴log a(ax1-1)<log a(ax2-1),∴f(x1)<f(x2),∴当0<a<1时,函数f(x)在(-∞,0)上为增函数.综上可知:函数f(x)=log a(a x-1)在其定义域上为增函数.——本课须掌握的三大问题1.利用对数的单调性可解简单的对数不等式.解对数不等式的关键是把真数视为一个整体,用对数函数的单调性构造不等式,但一定要注意真数大于零这一隐含条件.2.求与对数函数有关的复合函数的单调区间,首要的是弄清楚这个函数是怎样复合而成的,再按“同增异减”的方法来求其单调区间.3.对于对数型复合函数的综合应用的题目,无论是求最值还是求参数的取值范围,必须抓住两点:一是先求出原函数的定义域,二是在定义域内求出函数的单调区间,然后由函数的单调性求出其最值或参数的取值范围.此外在解题过程中一定要注意数形结合方法的灵活应用.学习至此,请完成课时作业21。