(2)向量共线中的“共线”的含义不是平面几何中的“共线”的含义,共
线向量有四种情况:方向相同模相等;方向相同模不等;方向相反模
相等;方向相反模不等.
(3)任一向量a都与它本身是平行向量.
激趣诱思
知识点拨
3.判断共线向量的方法
判断两向量是否共线,只要判断它们是否同向或反向即可.
4.判断向量相等的方法
答案:C
探究一
探究二
探究三
当堂检测
4.如图,四边形 ABCD 是菱形,则在向量, , , , 和中,
相等的向量有
对.
解析: = , = .
答案:2
探究二
探究三
当堂检测
解析:两个向量相等只要模相等且方向相同即可,而与起点和终点
的位置无关,故①不正确.
单位向量的长度为1,当所有单位向量的起点在同一点O时,终点都
在以O为圆心,1为半径的圆上,故②正确.
③④显然正确.故所有正确命题的序号为②③④.
答案:②③④
反思感悟1.判断一个量是否为向量应从两个方面入手:
(1)是否有大小;
(2)是否有方向.
2.零向量和单位向量
(1)零向量的方向是任意的,所有的零向量都相等.
(2)两个单位向量不一定相等,因为它们的方向不一定相同.
探究一
探究二
探究三
当堂检测
变式训练1有下列说法:
①若向量a与向量b不平行,则a与b方向一定不相同;
②若向量, 满足||>||,且与同向,则 > ;
出向量如图所示.
③由于点 C 在点 B 北偏东 30°处,且||=6,依据勾股定理可得在坐
标纸上点 C 距点 B 的横向小方格数为 3,纵向小方格数为 3√3≈5.2,