向量的概念及基本运算ppt
- 格式:ppt
- 大小:898.00 KB
- 文档页数:22
01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。
02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。
03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。
向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。
向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。
方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。
方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。
零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。
与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。
030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。
共线向量满足$vec{a} = kvec{b}$($k$为实数)。
向量平行如果两个向量的方向相同或相反,则称这两个向量平行。
平行向量满足$vec{a} parallel vec{b}$。
共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。
加法定义两个向量相加,即将它们的对应分量相加得到新的向量。
几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。
01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。
向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。
新高考数学新题型一轮复习课件第七章§7.6 空间向量的概念与运算考试要求1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.落实主干知识探究核心题型内容索引课时精练L U O S H I Z H U G A N Z H I S H I 落实主干知识知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有和 的量相等向量方向且模 的向量相反向量方向且模 的向量共线向量(或平行向量)表示若干空间向量的有向线段所在的直线互相或 的向量共面向量平行于的向量大小方向相同相等相反相等平行重合同一个平面2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使.(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在 的有序实数对(x ,y ),使p = .(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p = ,{a ,b ,c }叫做空间的一个基底.a =λb 唯一x a +y b x a +y b +z c3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b= .(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).|a||b|cos〈a,b〉向量表示坐标表示数量积a·b_________________共线a=λb(b≠0,λ∈R)_________________________a1b1+a2b2+a3b3a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)_____________________模|a |______________夹角余弦值 cos〈a,b〉=(a≠0,b≠0)cos〈a,b〉=_______________________a1b1+a2b2+a3b3=04.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.(3)空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2(λ∈R) l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m,l⊄αl∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm(λ∈R)平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm(λ∈R)α⊥βn⊥m⇔n·m=0判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( )(4)若a ·b <0,则〈a ,b 〉是钝角.( )√×××1.若{a,b,c}为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是A.{a,a+b,a-b}B.{b,a+b,a-b}√C.{c,a+b,a-b}D.{a+b,a-b,a+2b}∵λa+μb(λ,μ∈R)与a,b共面.∴A,B,D不正确.√由题意,根据向量运算的几何运算法则,3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =____.∵l1⊥l 2,∴a ⊥b ,∴a ·b =-6-4+m =0,∴m =10.10T A N J I U H E X I N T I X I N G 探究核心题型题型一空间向量的线性运算D1的中点,∵P是C∵N是BC的中点,∵M是AA1的中点,教师备选√用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.√√题型二空间向量基本定理及其应用(2)判断点M是否在平面ABC内.所以M,A,B,C四点共面,从而点M在平面ABC内.所以M,A,B,C四点共面,从而M在平面ABC内.教师备选跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是A.|a|-|b|=|a+b|是a,b共线的充要条件√√由|a|-|b|=|a+b|,可得向量a,b的方向相反,此时向量a,b共线,反之,当向量a,b同向时,不能得到|a|-|b|=|a+b|,所以A不正确;由A,B,C三点不共线,对空间任意一点O,可得P,A,B,C四点共面,故C正确;若P,A,B,C为空间四点,当λ+μ=1时,即μ=1-λ,所以A,B,C三点共线,反之也成立,即λ+μ=1是A,B,C三点共线的充要条件,所以D正确.属于∴M,A,B,C四点共面.即点M∈平面ABC.例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:题型三空间向量数量积及其应用则|a|=|b|=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,(2)求异面直线AG和CE所成角的余弦值.教师备选√设正方体内切球的球心为O,则OM=ON=1,∵MN为球O的直径,又P在正方体表面上移动,由向量数量积的定义知,要求a与b的数量积,需已知|a|,|b|和〈a,b〉,a与b的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b计算准确.跟踪训练3 如图所示,在四棱柱ABCDAB1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,=a2+b2+c2+2(a·b+b·c+c·a)(2)求证:AC1⊥BD;=a·b+|b|2+b·c-|a|2-a·b-a·c=0.(3)求BD1与AC夹角的余弦值.。