数图形方法总结
- 格式:doc
- 大小:45.50 KB
- 文档页数:3
数数图形方法总结一、对于一下简单的图形:
例1:数出下面图中有多少条线段。
例2:数一数下图中有多少个锐角。
例3:数一数下图中共有多少个三角形。
例4:数一数下图中共有多少个三角形。
例5:数一数下图中有多少个长方形。
以上这些简单的图形分割后的个数,通过实际的计数不难发现它们都存在同意个规律,即都可以根据如下公式计算:
1+2+3……(端点数-1),这样学生即可以简化了数的烦恼,还可快速正确
的数出图形的个数。
二、下面是复杂图形的个数的计算方法:
例1:数一数下图中有多少个长方形?
数长方形可以用下面的公式:
长边上的线段×短边上的线段=长方形的个数
例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
例3:数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)
一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)
例5:数线段的实际应用
求下列图中线段长度的总和。
(单位:厘米)
如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1)。
以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1)。
⼆年级专题第四讲:数⼏何图形的个数第四讲:数⼏何图形的个数“数⼏何图形的个数”是趣味图形问题的⼀种。
数图形虽然很简单,但重复计数和遗漏是经常出现的错误,在细⼼的同时还要掌握⽅法和技巧。
⼀、数线段1. 数出下列每条线段上线段的总条数。
分析与解:数线段的时候⼀定按⼀定的顺序数,否则就会出现重复或遗漏。
数时可以先数最基本的⼩线段,再数两条基本线段组成的线段,再数三条基本线段组成的线段,……,最后把各种“线段”条数相加起来。
法⼀:照下⾯的⽅法数(以第2⼩题为例):3+2+1=6(条)法⼆:(规律) 线段总条数都是从1开始的⼏个连续⾃然数的和,⽽且最后⼀个加数正好和最基本线段数相同。
(1)(条)(2)(条)(3)(条)⼆、数⾓2. 数出右图中总共有多少个⾓.分析与解:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个).令狐⽼师注:数⾓的⽅法可以采⽤例1数线段的⽅法来数,就是⾓的总数等于从1开始的⼏个连续⾃然数的和,这个和⾥⾯的最⼤的加数是⾓分线的条数加1,也就是基本⾓的个数. 【巩固】数⼀数右图中总共有多少个⾓?分析与解:因为∠AOB内⾓分线OC1、OC2…OC9共有9条,即9+1=10个基本⾓.所以总共有⾓:10+9+8+…+4+3+2+1=55(个).三、数三⾓形3. 如右图中,各个图形内各有多少个三⾓形?分析与解:⽅法⼀:(1)先数图中包含⼀个⼩三⾓形个数:△ABD、△ADE、△AEF、△AFC 共4个三⾓形.(2)再数由两个⼩三⾓形组合在⼀起的三⾓形个数:△ABE、△ADF、△AEC 共3个三⾓形,(3)以三个⼩三⾓形组合在⼀起的三⾓形:△ABF、△ADC 共2个三⾓形,(4)最后数以四个⼩三⾓形组合在⼀起的只有△ABC⼀个.所以图中三⾓形的个数总共有:4+3+2+1=10(个).⽅法⼆:我们就可以把数三⾓形问题转化为数线段问题了。
数数图形教学目标认识了解线段、角、三角形、长方形等基本图形;学会数基本图形的个数;掌握数图形的规律。
知识梳理一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
典例分析考点一:基本图形例1、数出下图中有多少条线段?【解析】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD3条;以B点为左端点的线段有:BC、BD2条;以C点为左端点的线段有:CD1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD3条;由2条基本线段构成的线段有:AC、BD2条;由3条基本线段构成的线段有:AD1条。
所以,图中一共有3+2+1=6(条)线段。
例2、数出图中有几个角?【解析】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD3个;以OB为一边的角还有:∠BOC、∠BOD2个;以OC为一边的角还有:∠COD1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD3个;由2个基本角构成的角有:∠AOC、∠BOD2个;由3个基本角构成的角有:∠AOD1个。
数图形的技巧
自古以来,人们就一直喜欢把数学和图形联系起来。
这些技巧可以让数学变得更有深度,也让我们能够更容易理解数学概念。
图形可以有助于我们更好地理解数学术语,数据的关系以及统计学的基础知识。
首先,图形可以帮助我们更好地理解数学概念。
在绘制图形时,我们可以使用一些简单的图标来代表数学概念,比如数字,平面几何图形,圆形,矩形等等。
这些图标不仅可以节省时间,而且可以更清晰地表达相关概念。
例如,通过使用圆形来表示圆周率可以让我们更直观地理解这一概念。
其次,图形可以帮助我们更好地理解数据之间的关系。
通过使用图表,我们可以更容易的观察数据之间的规律,从而获得更多的信息。
比如,可以使用折线图或饼图来展示不同离散类别之间的关系,从而获得更多的信息。
最后,图形可以帮助我们更好地理解统计学的基础知识。
绘制统计图形可以更清楚的说明数据的分布规律,比如质量,比例,概率等等,而且可以清楚的表示出这些数据之间的联系。
此外,绘制统计图形也可以用来表示数据之间的因果关系,从而帮助我们更好地分析问题。
总之,数图形技巧可以有效节约我们的时间,更加直观地了解数学概念,理解数据之间的关系,以及更好地理解统计学的基础知识。
在数学教学中,引入数图形技巧可以加深学生的理解力,提高学生的
学习效果。
与其他教学方法相比,使用数图形技巧可以让学生能够更深入了解数学概念,进而更好地掌握和应用知识。
数正方形个数的方法
将正方形的一角作为初始点,分别向两边写上正方形的个数,标好个数之后再用两边相对应的数字进行相乘,然后将乘的积进行相加,最终所得的和就是正方形的个数。
正方形的两组对边分别平行,四个角都是90°,邻边互相垂直,对角线互相垂直、平分且相等,每条对角线都平分一组对角,正方形是矩形的特殊形式,也是菱形的特殊形式。
数图形时要有次序、有条理,才能不遗漏、不重复,一般步骤应是:仔细观察,发现规律,应用规律。
长方形是用“点”或者“线”来数的,而正方形是用“块”来数的。
数正方形个数的公式:
假设大正方形的每边有N个小正方形,则在大正方形这个图形中有正方形的个数为:(即数正方形个数的公式)1*1+2*2+3*3+……+N*N。
在这里用1乘以1,2乘以2,这样简单的表达学生叫形象理解,容易掌握。
第二讲图形的计数本讲内容是让孩子们学会用计算的方法来数图形,在计算过程中结合第一讲速算巧算的方法来巩固和练习我们以往所学过的知识。
一、知识点(一) 平面图形的计数1、数线段与角的个数(打枪法、编号法)2、数三角形、正方形、长方形,圆形等(编号法、分层法)(二) 立体图形的计数1、数方块:⑴分层数(从上到下再求和)⑵按列数(刀切法)注意:每层数量=看见的+上层数量( 1)、数规整图形:观察规律,算是表达(牢记巧算速算的方法)(2)、数有缺口的图形方法:(1)分层数(2)补(补全图形去多余)(3)拆(拆成规整图形来计算)二、例题讲解与练习【习题1】你来数一数!( )个正方形( )个三角形( )个正方体【解析】:⑴、由小到大分类数,含有1个小方块的正方形个,编号法含有2 个小方块的正方形3 个共8+3=11(个);⑵、编号法,含有1个号的三角形1、2、3、4、5 共5 个,含有3个号的三角形163、164、264、265、365 共5 个(5 角星每个小角对应新组成的5 个大三角形),所以三角形共5+5=10 (个);(3)共1+5+6=12 (个)【习题2】数一数下面一共有多少个小圆点?【解析】: 不同的角度来观察,我们所选用的方法不同(方法不唯一),从上往下数第一层1个点,依次往下每一层都比上一层多一个一点,2、3、4、5、6、7、8、9,所以圆点的总数为1+2+3+4+5+6+7+8+9=45(个)【习题3】如下图所示,一单层砖墙下雨时塌了一处,请你数一数,需要多少块砖才能把墙补好?【解析】:细心观察的小朋友会发现整幅图里只有最后一层墙面的砖是全的,所以每层都与最后一层来比较(用缺补的思想把残缺的墙补全然后列算式),我们发现要补得砖的块数为:2+2+1+2+2+1=10 (块)。
【习题4】数一数下面的图形一共有多少个立方体?【解析】:此题分行(分层)数更易观察,从上往下数,第一层1块, 第二层我们能直观的看到3块,但是第一层的那块想要立在上面下面一定隐藏起了1块,所以第二层3+1=4(块), 同样的方法第3 层5+4=9(块),第4 层7+9=16(块),总数1+4+9+16=30(块),计算时别忘了我们学的凑整法杯赛点兵图形计数1、图中共有多少个三角形?2、下图需添加多少个小正方体可以组成一个较大的正方体?答案:1、15个2、15个。
数数图形方法总结一、对于一下简单的图形:
例1:数出下面图中有多少条线段。
例2:数一数下图中有多少个锐角。
例3:数一数下图中共有多少个三角形。
例4:数一数下图中共有多少个三角形。
例5:数一数下图中有多少个长方形。
以上这些简单的图形分割后的个数,通过实际的计数不难发现它们都存在同意个规律,即都可以根据如下公式计算:
1+2+3……(端点数-1),这样学生即可以简化了数的烦恼,还可快速正确
的数出图形的个数。
二、下面是复杂图形的个数的计算方法:
例1:数一数下图中有多少个长方形?
数长方形可以用下面的公式:
长边上的线段×短边上的线段=长方形的个数
例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
例3:数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)
一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)
例5:数线段的实际应用
求下列图中线段长度的总和。
(单位:厘米)
如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1)。
以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1)。