剪力弯矩图习题课
- 格式:ppt
- 大小:372.50 KB
- 文档页数:19
简支梁的剪力图和弯矩图例题
简支梁是一种受拉拔及弯矩影响的梁,它可以用来支撑荷载,改变楼层的结构形式,也可以用来支撑桥梁。
简支梁由梁顶、支点及梁端组成,其中梁顶受到拉拔和弯矩的双重作用,支点只受拉拔作用,梁端只受弯矩作用。
简支梁的剪力图和弯矩图是用来分析梁顶的剪力和弯矩的,它们是构成简支梁的基本工程图象。
简支梁的剪力图是用来分析梁顶的剪力的,它是由梁顶的剪力构成的图象,从而求出梁顶的剪力状态。
一般来说,简支梁剪力图是由梁顶上拉拔力的大小及其方向构成的,它以梁顶为枢纽,把力划分为两部分,一部分是向上的拉力,另一部分是向下的拉力,这样就可以求出梁顶的剪力状态。
简支梁的弯矩图是用来分析梁顶的弯矩的,它是由梁顶的弯矩构成的图象,从而求出梁顶的弯矩状态。
一般来说,简支梁弯矩图也是由梁顶上弯矩的大小及其方向构成的,它以梁顶为枢纽,把弯矩划分为两部分,一部分是向上的弯矩,另一部分是向下的弯矩,这样就可以求出梁顶的弯矩状态。
简支梁的剪力图和弯矩图是用来分析梁顶的剪力和弯矩的,它们是确定梁的设计参数的基础。
根据剪力图和弯矩图,可以确定梁顶的荷载状态,从而确定梁顶的设计参数,使梁能够满足设计要求。
因此,简支梁的剪力图和弯矩图非常重要,必须正确地计算和分析,以确保梁的安全性和结构稳定性。
总之,简支梁的剪力图和弯矩图是用来分析梁顶的剪力和弯矩的,它们是构成简支梁的基本工程图象,是确定梁的设计参数的基础,是确保梁的安全性和结构稳定性的重要工具和手段。
正确的分析简支梁的剪力图和弯矩图,是确保梁的安全性和结构稳定性的关键,也是工程师们必须掌握的重要技能。
第6章典型习题解析1.简支梁受力如图a 所示。
试写出梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支座反力由平衡方程∑=0Bm和∑=0A m 分别求得ql R A 83=,ql R B 81=利用平衡方程∑=0y 对所求反力进行校核。
(2)建立剪力方程和弯矩方程以梁的左端为坐标原点,建立x 坐标,如图a 所示。
因在C 处分布载荷的集度发生变化,故分二段建立剪力方程和弯矩方程。
AC 段:qx ql x Q -=83)(1 )20(lx ≤<212183)(qx qlx x M -= )20(lx ≤≤CB 段: ql x Q 81)(2-= )2(l x l<≤)(81)(2x l ql x M -= )2(l x l≤≤3.求控制截面内力,绘Q 、M 图Q 图:AC 段内,剪力方程)(1x Q 是x 的一次函数,剪力图为斜直线,故求出两个端截面的剪力值,ql Q A 83=右,ql Q C 81-=左,分别以a 、c 标在x Q -坐标中,连接a 、c 的直线即为该段的剪力图。
CB 段内,剪力方程为常数,求出其中任一截面的内力值,例如ql Q B 81-=左,连一水平线即为该段剪力图。
梁AB 的剪力图如图b 所示。
M 图:AC 段内,弯矩方程)(1x M 是x 的二次函数,表明弯矩图为二次曲线,求出两个端截面的弯矩,0=A M ,2161ql M C =,分别以a 、c 标在x M -坐标中。
由剪力图知在d 点处0=Q ,该处弯矩取得极值。
令剪力方程0)(1=x Q ,解得l x 83=,求得211289)83(ql l M =,以d 点标在x M -坐标中。
据a 、d 、c 三点绘出该段的弯矩图。
CB 段内,弯矩方程)(2x M 是x 的一次函数,分别求出两个端点的弯矩,以c 、b 标在x M -坐标中,并连成直线。
AB 梁的M 图如图c 所示。
2.梁的受力如图a 示,利用微分关系作梁的Q 、M 图。
弯矩图练习题在力学中,弯矩图是一种图形表示方法,用于描述材料在受到外力作用下弯曲的情况。
通过解析力学的知识,我们可以根据给定的条件绘制出弯矩图,以帮助我们了解结构体在力的作用下的变形情况。
在本文中,我将介绍一些弯矩图的练习题,并解答它们。
1. 简支梁的考虑一个简支梁,其长度为L,受到均匀分布载荷q的作用。
为了绘制弯矩图,我们需要先计算出梁在各个点的剪力和弯矩。
首先,我们可以计算出梁的支反力。
由于梁是简支的,所以在两个端点的支反力大小相等。
根据平衡条件,我们可以得到:支反力R = qL/2接下来,我们可以计算出梁在任意位置x处的剪力V(x)和弯矩M(x)。
根据均布载荷的性质,我们可以得到:V(x) = R - qxM(x) = Rx - (q/2)x^2通过这些计算,我们可以绘制出梁的弯矩图。
在绘图时,我们将横轴表示位置x,纵轴表示弯矩M。
我们可以观察到,在简支梁上,弯矩图为一条抛物线形状,当x=L/2时,弯矩图达到最大值。
2. 悬臂梁的现在考虑一个悬臂梁,其长度为L,悬臂部分的长度为a。
该梁受到集中力F的作用。
对于悬臂梁,我们需要使用不同的方法来计算弯矩图。
首先,考虑梁的支反力。
由于悬臂梁只有一个支点,支反力大小与集中力F相等,方向相反。
支反力R = -F接下来,我们需要计算悬臂梁在不同位置x处的剪力V(x)和弯矩M(x)。
根据悬臂梁的几何特性和受力分析,我们可以得到:V(x) = -FM(x) = -Fx + Fx = 0从上述计算结果中可以看出,悬臂梁的弯矩图是一条直线,且弯矩始终为零。
这是因为在悬臂梁的支点处,不会出现弯矩。
3. 复杂结构的除了简支梁和悬臂梁,我们还可以考虑更加复杂的结构。
对于复杂结构,我们可以利用叠加原理来计算弯矩图。
以一个梁柱系统为例,梁的两端固定在墙上,悬臂部分受到集中力F的作用。
我们需要分别计算梁的弯矩图和柱的弯矩图,然后将它们叠加得到整个系统的弯矩图。
梁的弯矩图我们已经在第一题中计算过了,而柱的弯矩图可以通过悬臂梁的方法计算得到。