解理弹簧断口微观形貌特征
- 格式:doc
- 大小:2.48 MB
- 文档页数:8
弹簧准解理断口形貌特征准解理断裂属于脆性穿晶断裂,宏观断口形貌比较平整,基本上无宏观塑性变形或有极少的宏观塑性变形。
断口大多呈结晶状,小刻面亮但不发光。
准解理断口也经常显示有较明显的放射状花样,可以根据放射状花样的走向分析判断断裂起源和准解理主裂纹扩展方向,见图5-1.图5〃 30CrMnSi漱解理宏观断口放射状花样由于准解理断裂是界于解理断裂与韧窝断裂之间的一种断裂方式,因此准解理断口微观形貌特征既不同于解理断口也有别于延性韧窝断口。
1、河流花样准解理断裂河流花样通常起源于晶粒内部的孔洞、非金属夹杂物、硬质点及析出物等。
河流由内部向小平面的周边扩展,河流较短不连续,汇合特征不明显。
在倾斜晶界、扭转晶界和大角度晶界的界而处没有河流的延续或激增的情况。
如果准解理断裂接近解理断裂时,准解理小平面比较平整、河流向一个方向流动并有汇合的表现。
小平面之间以撕裂方式相接,可看到明显的撕裂棱,这一特征与解理断口的河流花样有较明显的区别。
如果断裂方式接近韧窝断裂时,在断日上也可能看不到河流花样,断口表面全部山撕裂棱组成,见图5-2。
图5∙2准解理断口2、撕裂棱准解理断裂断裂单元为小平面,回火马氏体组织的准解理面为(Io0)。
小平而之问发生塑性变形以撕裂的方式相连接。
准解理断裂接近解理断裂机制时撕裂棱较小,如果断裂机制接近韧窝断裂时撕裂棱突起特别明显早花瓣状,见图5-3。
图5-3 45钢冲去断裂准解理断口x53O3、准解理小平面比回火马氏体尺寸大得多,它相当于淬火前的原始奥氏体品粒尺度。
准解理面的大小取决于材料成份、组织状态和试验条件等。
4.在准解理断口上有时能看到舌状花样,但并不常见。
弹簧断口分析方法弹簧断口分析分宏观分析与微观分析两大类。
放大倍数在50X以下称为宏观弹簧断口分析,放大倍数在50X以上称为微观弹簧断口分析。
一、宏观分析宏观分析指用肉眼、放大镜或低倍率光学显微镜观察分析弹簧断口。
宏观分析是断裂分析的基础,通过宏观分析可以确定断裂的性质、受力状态、裂纹源位置、裂纹扩展方向及材料性能估价。
根据弹簧断口表面粗糙度及反光情况可以大致判断断裂性质。
一般解理断裂弹簧断口表面光滑平整,弹簧断口颜色光亮有金属光泽。
韧窝弹簧断口表面呈纤维状粗糙不平,表面颜色灰暗无结晶颗粒无金属光泽。
疲劳弹簧断口上通常有海滩状花样,疲劳源处光滑细腻。
脆性材料瞬断区为结晶状,韧性材料为纤维状和剪一切唇弹簧断口。
脆性沿晶弹簧断口为结晶状和反光的小刻面。
应力腐蚀弹簧断口表面无金属光泽。
观察弹簧断口上有无塑性变形、剪切唇、毛刺及台阶能够判断零件受力情况。
脆性弹簧断口在弹簧断口附近没有宏观塑性变形迹象,弹簧断口源区边缘无剪切唇,弹簧断口与正应力垂直。
剪切弹簧断口附近有明显的塑性变形,弹簧断口倾斜呈45度角,弹簧断口沿最大剪切应力平面扩展。
材料性能估价:根据拉伸弹簧断口上纤维区、放射区和剪切唇三区比例可以粗略估价材料性能。
纤维区比例大材料的塑性韧性好,放射区比例大材料的塑性降低,脆性增大。
又如冲击弹簧断口上若无放射区说明材料的塑性好。
若放射区比例大则材料脆性大。
另外还要观察弹簧断口表面是否有氧化色及有无腐蚀的痕迹,据此判断零件工作温度、工作环境。
二、光学显微镜弹簧断口分析光学显微镜弹簧断口分析是指用金相显微镜和双镜筒的立体显微镜分析弹簧断口。
在宏观分析后一般用光学显微镜观察材料的显微组织及裂纹形态特征、走向及裂纹始末端情况及裂纹两侧显微硬度变化、夹杂物分布和裂纹内的氧化物或腐蚀产物形态等内容。
为搞清弹簧断口走向与组织的关系经常在光学显微镜下观察与弹簧断口对应的显微组织。
将断日保护好后在与其垂直或成一定角度的剖面上制取全相试样。
欢迎访问中国金相分析网您现在位置:失效分析 > 弹簧失效分析压缩螺旋弹簧的断裂分析于志伟1,季士军1,史雅琴1,孙俊才1,张 晓2(1.大连海事大学金属材料工艺研究所,辽宁大连 116026;2.沈阳工学院专科学校 辽宁沈阳 110015)摘要:通过观察断口的宏观痕迹、微观形态以及金相组织,并辅以测定表面宏观残余应力、硬度梯度等试验,对一动力机械上的圆柱形压缩螺旋弹簧的断裂原因进行了较为细致的分析.结果表明,此批弹簧断裂是由磨削加工不当在磨剂端面下亚表层产生了氢致沿晶开裂带,弹簧服役承载时在正应力的作用下发生了氢滞后脆性断裂.改进磨削工艺后弹簧脆断现象完全消除.关键词:弹簧;磨削加工;氢致脆断弹簧是机械产品中的重要基础元件之一,弹簧的性能质量直接影响着整个设备的运行安全和效率.有关结构设计、材料、生产工艺过程以及服役环境等方面原因而导致弹簧失效的故障分析有许多报导[1],但从材料工艺角度细致的观测分析工作并不多见.由于弹簧的种类繁多,应用面广,随着各种新技术、新工艺引入弹簧的生产制造,弹簧的失效形式、部位也常常表现各异,尽管对某一具体弹簧的失效分析并不一定具有普遍的指导意义,但找到失效原因,对提高产品质量,避免类似事故发生仍有很强的实用性.本文通过较细致地观测一例弹簧断裂特征来分析失效原因.1 情况概述某厂生产的动力机械设备弹簧材料为60Si2Mn,制造工序依次为:将直径为Φ52mm的钢棒两端加热拔尖,整体加热卷制成外径为Φ237mm的等径螺旋形簧坯,然后将其置于热处理炉中870℃加热1h,取出空冷1min随即水淬冷至150℃,再入炉430℃回火8h.簧坯两端面在磨簧机上磨平,因磨削时温度很高,所以始终采用喷水冷却磨面.最后经整体喷丸处理便制成圆柱形压缩螺旋弹簧成品.按以上工艺流程制造的一批弹簧装机试运行10多分钟便发生断裂,检验发现裂纹源位于磨面附近,整个磨面布满了网状微裂纹,磨面下出现约0.4mm厚白亮层,其硬度达HRC=61~63.厂方认为这批弹簧的断裂原因是由磨削加工时表层发生淬火现象引起的,表层马氏体受拉应力而开裂形成表面微裂纹从而导致了弹簧断裂.基于这样认识,为挽救余下尚未使用的成品弹簧,便改用干磨削加工以去除表面微裂纹和硬化层,磨面再重新喷丸处理,经检验合格后装机使用,在1.8t正常负荷下运行了几小时也相继发生了断裂,如图1所示.图1 断裂弹簧的实物照片 图2 断口的宏观形貌2 观测试验及结果2.1断口宏观观察此批弹簧的断裂部位均出现在端面上第一圈与第二圈并圈附近,如图1所示.从断口的宏观形貌可见,断口上出现两个裂纹扩展面Ⅰ、Ⅱ,两面夹角约90°,根据断口上遗留的裂纹扩展痕迹可判断出两宏观断面的断裂次序:断面Ⅰ→断面Ⅱ,主裂纹源位于主断面Ⅰ与磨削面交界线上的中点A,主裂纹自端面起向下扩展,外侧扩展速度较快,内侧扩展速度较慢,当主裂纹前缘扩展至下部边缘B点,便引发二次裂纹在二次断面Ⅱ沿箭头所指方向扩展,直至完全断裂.两次断裂均属瞬时断裂.仔细观察还可发现,在靠近断口的磨削面上还出现了许多径向表面微裂纹,这些微裂纹的方向与该处的磨削方向垂直,与主断面Ⅰ约成45°角.2.2断口微观观察采用JSM235CF扫描电子显微镜观察断口的微观形貌.在主裂纹源A观察到一个半径为0.5mm的半圆形凹坑[图3(a)],坑壁形貌呈沿晶断裂特征——冰糖状花样[图3(b)],此外,在距磨削面下0.5~2mm深度内的主断面É上还观察到一个带状的沿晶开裂区[图3(c)],在此区内的断面下层仍呈现沿晶开裂[图3(d)],在其后的裂纹快速扩展区及二次断面Ê的整个区域,断口形貌以准解理和萘状断口为主.2.3金相组织观察在断口附近的磨削面上沿周向垂直于表面微裂纹截取一金相试样,经抛光,4%硝酸酒精溶液浸蚀后置于扫描电镜下观察金相组织及表面裂纹.观察发现靠近磨削面的微裂纹粗而宽,内含一些氧化物杂质[图4(a)],这些微裂纹沿晶界曲折向内延伸变细[图4(b)],微裂纹总深度约为015mm,这些微裂纹是典型的磨削裂纹.从图4(a)还可看出磨削面下的金相组织为回火屈氏体,心部金相组织以珠光体为主.2.4硬度测试为了解热处理弹簧的淬硬层深度,在断口附近沿径向取一横截面,抛光成金相试样后测洛氏硬度梯度,结果见图5.对照金相观察,淬硬层深度——半马氏体深度约为17mm,表层硬度HRC=53,心部为HRC=35,这表明弹簧未被淬透,经计算断裂源处最大的磨削深度约为215mm.图3 断口的微观形貌图4 断簧表层的金相组织图5 弹簧表层的硬度分布2.5表面应力测定采用日本理学MSF-2M型X射线应力仪测定断簧表面的周向残余应力.以CrKα辐照α-Fe的(211)晶面,用sin2ψ法将ψ0分别固定在0°、15°、30°及45°.多处测定结果显示,经热处理及喷丸处理后整个弹簧表面均处于压应力状态.内侧弧面未径喷丸,仅热处理产生的周向应力为-256MPa,端面再径磨削加工,喷丸处理后平均周向应力为-805MPa.由于热处理时整个弹簧未被淬透,淬火过程表层产生的周向热应力与组织应力均为压应力[2],迭加后总的热处理应力为残余压应力.磨削后再经喷丸处理,测磨削应力基本已消除.因此,测得的端面周向应力与内侧弧面周向应力的差值-549MPa应是由喷丸产生的.3 断裂原因分析3.1表层缺陷的形成前已述及,磨削加工时原端面产生了新的马氏体相变层,这表明磨削时表层温度已大于弹簧材料60Si2Mn的Ac1点755℃,这样高的温度足以使磨面上的冷却水汽化,一部分氧原子,尤其是氢原子很容易被带入处于磨削拉应力状态的表层中并向内部扩散.尽管后续不断的磨加工也会削掉扩散到表层内的氧、氢原子,但具有很强扩散能力的氢原子仍会有部分残留在磨削面下的基体中,并随着磨加工的进行逐渐积累.表面新马氏体层形成时产生的残余压应力场还会把氢原子封入其下的亚表层中,使其不易向外逃逸.后来喷丸处理时,表层的残余应力场将重新分布.一般喷丸处理后外表层产生残余压应力,内表层伴生一相当的残余拉应力场[3].此间,残存在淬硬层内处于压应力区域的氢原子会向拉应力区上坡扩散[4],并稳定地富集在该区的晶界处,从而大大降低晶界强度,在较低的外力作用下就能导致沿晶开裂,形成表面网状微裂纹.虽然随后采取了干磨削以去除表面网状微裂纹和硬化层,但已残留在亚表层内的氢原子仍会沿晶界快速向基体扩散,同样,再次喷丸处理后还会形成氢致表面微裂纹,只不过微裂纹的形态变了,密度降低了.3.2断裂过程的力学分析一般说来,等径的压缩螺旋弹簧承载时,簧丝的任一径向横截面主要受扭转应力τ作用[5].端面向下位移时,由于拔尖区的横截面积较小,易于变形,而端面上第一圈与第二圈并圈处的径向横截面积最大,因此它是整个端面受扭力最大的位置1根据弹性应力分析[6],弹簧横截面上的切应力、正应力的大小、方向均随位置而变,参照断簧实物图1,在裂纹源附近与扭转切应力成45°的最大主应力σ的方向恰与主断面Ⅰ的法向平行(图6),这表明磨面下的实际断裂源是在正应力下沿晶开启的,起裂方向与表面径向磨削裂纹无关.断裂源一旦形成, Ⅰ型裂纹尖端应力场则会诱使周围的氢原子向裂纹前缘富集[7].氢原子富集与主裂纹缓慢扩展交替进行,直到裂纹尺寸达到临界值而失稳扩展.这期间裂纹扩展依赖于时间,表现为滞后断裂.主裂纹向下失稳扩展时,由于外侧的扩展速度大于内侧的扩展速度,当主张裂纹前端先达主断面底部附近的B点,该处的最大主应力面也刚好与主断面Ⅰ垂直,二次裂纹则以B点为断裂源,仍在正应力下扩展,直至断面分开.断面Ⅰ、Ⅱ均由正断形成.图6 主裂纹源A起裂,扩展过程的受力示意图4 改进措施及结果综上分析,此批弹簧断裂是由高温磨削时冷却水汽化将氢带入基体中引起的.改进磨削工艺应减缓甚至消除氢致脆断.改进磨削工艺后的试验表明,始终采用干磨削加工端面,磨削后期适当降低磨面温度可完全消除表面微裂纹和氢致脆断.由此也印证本文对这批弹簧断裂的原因分析是正确的.若本文对您有所帮助,同时为了让更多人能看到此文章,请多宣传一下本站,支持本站发展;多谢!建议用 IE 1024*768 分辨率浏览本网站版权所有(c) 中国金相分析网。
解理断裂的微观断口特征断裂是指材料或物体在外力作用下发生的破裂现象。
在材料工程领域中,对断裂行为的研究具有重要的意义,可以揭示材料的力学性能和耐久性。
而要深入了解断裂现象,就需要对微观断口特征进行解理。
微观断口特征是指断裂发生后,在断口上观察到的各种形态和结构。
通过对微观断口特征的解理,可以了解材料的断裂机制、断裂韧性、断裂韧性转变温度等重要信息。
常用的解理方法包括光学显微镜观察、扫描电子显微镜观察、透射电子显微镜观察等。
在光学显微镜下观察断裂断口,可以发现断口上存在着不同的特征区域。
首先是断口的主要断裂区,通常呈现出明显的沿晶断裂和穿晶断裂。
沿晶断裂是指断裂沿晶界发展,晶粒基本保持完整,常见于金属材料。
而穿晶断裂是指断裂穿过晶粒,晶粒内出现裂纹,常见于陶瓷等脆性材料。
除了晶界和晶粒的断裂特征外,断口上还可以观察到其他形态的特征。
例如,断裂面上的沟槽、韧突和斑点等。
沟槽是指断裂面上的细长槽状结构,常见于金属材料的疲劳断口。
韧突是指断裂面上突出的、具有韧性的小区域,常见于高强度钢材料的断裂面。
斑点是指断裂面上散布的微小亮点或暗点,代表着材料中的微观缺陷。
在扫描电子显微镜下观察断裂断口,可以获得更高分辨率的图像。
通过扫描电子显微镜观察,可以清晰地看到断裂面上的晶体结构、晶界和微观缺陷。
同时,还可以利用能谱分析等技术对断口进行元素分析,从而了解断口上各个区域的化学成分差异。
透射电子显微镜是一种高分辨率的显微镜,可以观察到材料中的原子级结构。
在透射电子显微镜下观察断裂断口,可以揭示材料内部的晶体结构、晶界及其缺陷。
透射电子显微镜还可以通过电子衍射技术,确定断裂面的晶体取向和晶界的类型。
通过对微观断口特征的解理,可以得到丰富的信息,从而揭示材料的断裂行为和断裂机制。
例如,通过观察断裂面上的韧突和沟槽,可以评估材料的韧性和脆性。
通过分析断口上的裂纹扩展路径,可以研究裂纹的传播行为和断裂韧性转变温度。
通过观察断裂面上的晶体结构和晶界特征,可以了解晶界对断裂行为的影响。
解理断裂定义解理断裂~宏观脆性断裂解理面:一解理断口宏观形貌特征结晶状小平面、“放射状”或“人字形”花样。
1)结晶状小平面:解理断口上的结晶面宏观上无规则取向。
在光照下呈现许多反光小平面。
2)放射状或人字形花样放射条纹的收敛处和人字的尖端为裂纹源。
人字型形态反映材料性质和加载速度。
材料机械性能相同时,加载速度越大“人字纹”越明显。
加载速度相同时,材料脆性越大,“人字纹”越明显。
二解理断口微观形貌特征河流花样、舌状花样、扇形花样、鱼骨状花样、瓦纳纹及二次裂纹。
1河流花样1)解理台阶产生机制(1)两个不再同一平面的解理裂纹通过与主解理面相垂直的二次解理形成解理台阶。
(2)解理裂纹与螺位错相交截形成台阶。
(3)解理裂纹之间形成较大的塑性变形,通过撕裂方式连接形成台阶(4)通过基体和孪晶的界面发生开裂连接形成台阶2)河流花样的起源及在裂纹扩展中的形态变化(1)河流花样起源于有界面的地方:晶界、亚晶界、孪晶界(2)起源于夹杂物或析出相(3)起源于晶粒内部~解理面与螺位错交割所致扩展过程中:(1)小角度晶界现象:连续地穿过晶界,顺延至下一个晶粒原因:偏转角度小(2)扭转晶界(孪晶界)现象:发生河流的激增原因:偏转角度大,裂纹需重新形核(3)普通大角度晶界现象:产生大量河流,晶界两侧河流台阶的高度差大2 舌状花样现象:体心立方晶体在低温和快速加载时及密排六方金属材料中由于孪生是主要形变形式,断口上经常可以看到舌状花样。
形成机理:主裂纹从A扩展至B,遇到孪晶,然后沿着孪晶界扩展至C,此时,如果孪晶发生二次解理,则裂纹沿CHK扩展,如果孪晶发生撕裂,则裂纹沿CDE扩展。
舌状花样成对出现,在一个断面上凸出,在另外一个断面上凹陷。
3 扇形花样起源于靠近晶界的经历内部,以扇形的方式向外扩展。
解理台阶为扇形的肋。
4 鱼骨状花样现象:体心立方金属材料中例如碳钢、不锈钢有时看到形状类似鱼脊骨的花样。
中间脊线是{100}[100]解理造成的,两侧是{100}[110]和{112}[110]解理造成的。
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的宏观形貌、微观形态及断裂机理断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。
穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。
沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。
下面分别加以讨论。
1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。
宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。
众所周知,这种断口称为杯锥状断口。
断口表面粗糙不平,无金属光泽,故又称为纤维状断口。
微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。
每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。
第二相质点的尺寸远小于韧窝的尺寸。
韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。
由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。
在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。
图3-41是微孔穿过第二相质点的示意图。
若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。
2)在韧窝的底部没有第二相质点存在的情况。
韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。
这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。
因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。
当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。
弹簧韧窝断口的微观形貌特征弹簧韧窝断口的微观形貌特征是一些大小不等的圆形或椭圆形的凹坑一韧窝。
在韧窝内经常可以看到夹杂物或第二相粒子。
然而并非每个韧窝都包含一个夹杂物或粒子,因为夹杂物或粒子分布在两个匹配断口上。
此外夹杂物在断裂、运输或超声波清洗时也可能脱落。
凹坑的形状有等轴韧窝、剪切韧窝和撕裂韧窝三种,其形状取决于应力状态。
图3-4为最大应力方向对韧窝形状影响的示意图。
等轴韧窝是圆形微坑见图3-4(a)。
是在拉仲正应力作用下形成的。
应力在整个断口表面上分布均匀,显微空洞沿空间三个方向上均匀长大,形成等轴韧窝。
图3-5是拉伸断裂的等轴弹簧韧窝断口。
剪切韧窝呈抛物线形。
在剪切应力作用下显微孔洞沿剪切方向上被拉长。
剪切韧窝在两个相匹配的断口表面上的方向相反。
剪切韧窝通常出现在拉伸或冲击断口中的剪切唇部位,见图3-6。
(a)拉伸断裂:在两断口面上形成等轴韧窝;(b)剪切断裂:在两断口面上指向相反的拉长韧窝。
拉伸撕裂:在两个断面上形成指向断口源的拉长韧窝撕裂韧窝也是被拉长了的韧窝,呈抛物线形状,是在撕裂应力作用下形成的。
撕裂时材料受到力矩作用,显微空洞各部分所受应力不同,沿着受力较大的方向韧窝被拉长。
常见于尖锐裂纹的前端及平面应变条件下作低能撕裂的断口,见图3-7.剪切韧窝与撕裂韧窝形状没什么区别,只从照片上很难区分,必须对断口两侧面作对应研究,看凸向是否相同才能确定。
卵形韧窝是大韧窝在长大过程中与小韧窝交截的结果,它是附着在大韧窝之上_的小韧窝形状类似卵形,见图3-8。
沿晶韧窝是在断裂过程中沿晶界发生了一定的塑性变形,在晶界上形成的韧窝,见图3-9。
常出现在过热断裂的沿品断口上。
另外韧窝形状与大小还受夹杂物形状的影响,例如长条、棒状或带状夹杂物生成长条状韧窝,见图3-10。
实际断裂零件中,零件局部区域受力状态复杂,在断口上可能出现各种不同形状的韧窝,例如在钢中经常可以看到大韧窝之间布满小韧窝见图3-11,或者等轴韧窝与抛物线韧窝交替分布。
断心的宏瞅形貌、微瞅形态及断裂机理之阳早格格创做按断裂的道路,断心可分为脱晶断裂战沿晶断裂二大类.脱晶断裂又分为脱晶韧性断裂战脱晶解理断裂(其中包罗准解理断裂).沿晶断裂也分为沿晶韧性断裂战沿晶坚性断裂.底下分别加以计划.(1)脱晶韧窝型断心断裂脱过晶粒里里,由洪量韧窝的成核、扩展、对接而产死的一种断心.宏瞅形貌:正在推伸考查情况下,经常先塑性变形,引起缩颈,而后正在缩颈部位裂纹沿与中力笔直的目标扩展,到一定程度后得稳,沿与中力成45°目标赶快死少至断裂.寡所周知,那种断心称为杯锥状断心.断心表面细糙不仄,无金属光芒,故又称为纤维状断心.微瞅形态:正在电子隐微镜战扫描电镜下瞅察,断心常常是由洪量韧窝对接而成的.每个韧窝的底部往往存留着第二相(包罗非金属夹纯)量面.第二相量面的尺寸近小于韧窝的尺寸.韧窝产死的本果普遍有二种产死情况:1)韧窝底部有第二相量面的情况.由于第二相量面与基体的力教本能分歧(其余,还有第二相量面与基体的分散本领、热伸展系数、第二相量面自己的大小、形状等的效率),所以正在塑性变形历程中沿第二相量面鸿沟(大概脱过第二相量面)易产死微孔裂纹的核心.正在应力效率下,那些微孔裂纹的核心渐渐少大,并随着塑性变形的减少,隐微孔坑之间的对接部分渐渐变薄,直至末尾断裂.图3-41是微孔脱过第二相量面的示企图.若微孔沿第二相面鸿沟成核、扩展产死韧窝型裂纹后,则第二相量面留正在韧窝的某一侧.2)正在韧窝的底部不第二相量面存留的情况.韧窝的产死是由于资料中本去有隐微孔穴大概者是由于塑性变形而产死的隐微孔穴,那些隐微孔穴随塑性变形的删大而不竭扩展战相互对接,直至断裂.那种韧窝的产死往往需要举止很大的塑性变形后才搞够真止.果此,正在那类断心上往往惟有少量的韧窝大概少量变形状韧窝,有的以至经很大的塑性变形后仍睹不到韧窝.当变形不大时,断心呈波纹状大概蛇形格式,而当变形很大时,则为无特性的仄里.韧窝的形状与应力状态有较大闭系.由于试样的受力情况大概是笔直应力、切应力大概由直矩引起的应力,那三种情况下韧窝的形状是纷歧样的.(2)解理与准解理断心1)解理断心.断裂是脱过晶粒、沿一定的结晶教仄里(即解理里)的分散,特天是正在矮温大概赶快加载条件下.解理断裂普遍是沿体心坐圆晶格的{100}里,六圆晶格的{0001}里爆收的.宏瞅形貌:解理断裂的宏瞅断心喊法很多,比圆称为“山脊状断心”、“结晶状断心”、以及“萘状断心”等(睹图片3-53).山脊状断心的山脊指背断裂源,可根据山脊状正接直线群判决断裂起面战断裂目标.萘状断心上有许多与背分歧、比较光润的小仄里,它们象条晶体一般闪闪收光.那些与背分歧的小仄里与晶粒的尺寸相对于应,反映了金属晶粒的大小.微瞅形态:正在电子隐微镜下瞅察时,解理断心呈“河流格式”战“舌状格式”.2)准解理断心.那种断心正在矮碳钢中最罕睹.前述的结晶状断心便是准解理断心,它正在宏瞅上类似解理断心.准解理断心的微瞅形态主假如由许多准解理小仄里、“河流格式”、“舌状格式”及“撕裂岭”组成.沿晶断心是沿分歧与背的晶粒鸿沟爆收断裂.其爆收的主要本果是由于晶界强化,使晶界强度明隐矮于晶内强度而引起的.制成晶界强化的本果很多,比圆,锻制历程中加热战塑性变形工艺不当引起的宽沉细晶;下温加热时气氛中的C、H等元素浓度过下以及炉中残存有铜,渗人晶界;过烧时的晶界熔化大概氧化;加热及热却不当制成沿晶界析出第二相量面大概坚性薄膜;合金元素战夹纯偏偏析制成沿晶界的富集;其余沿晶界的化教腐蚀战应力腐蚀等等,皆不妨制成晶界强化,爆收沿晶断心.(1)沿晶韧窝型断心若第二相量面沿晶界析出的稀度很下,大概果有一定稀度的第二相量面再加上晶粒细大,皆市爆收沿晶韧窝型断裂.沿晶韧窝产死的本果与脱晶韧窝相共.那种断裂的隐微裂纹是沿着大概脱过第二相量面成核的.隐微裂纹的扩展战对接,伴伴随一定量的微瞅塑性变形.正在断心表面可瞅到许多位背分歧、无金属光芒的“小棱里”大概“小仄里”.那些“小棱里”大概“小仄里”的尺寸与晶粒尺寸相对于应(如果晶粒细小,则断心表面上的“小棱里”大概“小仄里”用肉眼便不克不迭瞅到大概不明隐).正在电子隐微镜下瞅察“小校里”大概“小仄里”,它是由洪量韧窝组成的,韧窝底部往往存留有第二相量面(大概薄膜).石状断心战棱里断心皆是沿晶韧窝型断心.其余,偏偏析线也是一种沿晶韧窝型断心.(2)沿晶坚性断心正在沿晶坚性断心上,险些不塑性变形的痕迹大概仅瞅到极少的韧窝.比圆,过烧后的断心,便是沿晶界氧化物薄膜爆收的一种沿晶坚性断裂.其余,18-8奥氏体不锈钢沿晶界洪量析出碳化物后,也易爆收沿晶坚断;沿晶界化教腐蚀战应力腐蚀(包罗氢坚)后爆收的断心,也皆是沿晶坚性断心.属于那类断心的另有层状断心战撕痕状断心等.上头介绍的断心微瞅形态,是依照断裂的道路去分类的.而本量死产中睹到的断心偶尔往往是由几种典型并存的混同断心.比圆,石状断心中,如果“小棱里”大概“小仄里”不是贯脱所有断里,断心时常是沿晶战脱晶混同断心.正在本量死产中根据缺陷断心的宏瞅形貌战微瞅形态便不妨推断出缺陷的典型、缺陷爆收的本果战应采与的对于策.比圆某厂死产的迫打炮炮尾,正在试炮时时常爆收合断的情况,经断心考查创制是石状断心,经选区电子衍射分解确认韧窝底部的析出相颗粒是MnS再分散现场考察认为该缺陷爆收的本果是末锻前的加热温度过下,末锻时的变形程度过小制成的.由于加热温度下,使奥氏体晶粒细大,并使MnS洪量溶进基体,锻后热却时,MhS沿细大的奥氏体晶界析出,制成晶界宽沉强化所致,厥后改变预制坯的尺寸以删大末锻的变形量,并落矮末锻前的加热温度,问题便圆谦天办理了.又比圆某厂死产的Cr—Ni—Mo—V钢某种庞大轴类锻件,正在运止中爆收的坚性断裂,经断心考验创制:此类锻件存留有棱里断心.该锻件用的钢是正在5t碱性电弧炉中用氧化法冶炼的,锭沉2.2t,锻制加热温度为1180~1200℃,保温3h以上,锻后坐时收热处理炉举止退火、扩氢处理,而后举止细加工战调量处理.调量后正在二端切与试片,做纵背断心考验,创制有棱里断心,棱里断心大多出当前庞大锻件的心部,而锻件边部仍为仄常的纤维状断心,金相构制中有沿本细大奥氏体晶界的析出相的链状搜集.棱里断心的微瞅形态,韧窝内的析出相为不准则的四边形,呈薄片状,经选区电子衍射决定为AlN.由AlN的等温析出直线可睹,正在约900℃缓缓热却时,将有洪量的AlN析出.根据上述考验截止分解认为:1)该Cr—Ni—Mo—V钢庞大轴类锻件,其棱里断心主假如正在锻制加热时温度较下,保温时间过少,正在锻后缓热历程中,固溶进基体的洪量AlN呈薄片状沿细大的奥氏体晶界呈链状搜集析出,制成微孔散合型沿晶断裂而产死的.奥氏体晶粒越细大,析出相稀度愈下,晶界强化愈宽沉. 2)锻制下温加热的时间越少,固溶人基体的AlN越多,随后缓热历程中产死校里断心的倾背越大,果此适合统制锻制加热典型是很要害的.3)由于AlN正在奥氏体区析出峰值的温度约为900℃,其析出相随保温时间的延少而减少.果此,采与落矮待料温度,减少一次过热工艺,则能加快锻后热却速度,缩小锻件正在奥氏体区AlN析出峰值温度的停顿时间,果而便能压制AlN沿细大奥氏体晶界的析出.死产考查说明,那是预防Cr—Ni—Mo—V钢锻件爆收棱里断心的灵验步伐.。
解理弹簧断口微观形貌特征
在实际使用的金属弹簧材料中晶体取向是无序的,解理弹簧裂缝沿不同取向解理面扩展过程中弹簧裂缝会相交成具有不同特征的花样,其中最突出最常见的特征是河流花样,另外还有舌状花样、扇形花样、鱼骨状花样、瓦纳线及二次裂纹。
一、河流花样
解理裂纹沿晶粒内许多个互相平行的解理面扩展时相互平行的裂纹通过二次解理;与螺位错相交;撕裂或通过基体和孪晶的界。
面发生开裂而相互连接,由此产生的条纹花样类似河流称为河流花样;见图4-3解理裂纹扩展过程中为减少能量的消耗,河流花样会趋于小河流合并成大河流。
根据河流的流向可以判断裂纹扩展方向及由此找出裂纹源,见图4-4。
1、解理台阶产生机制
①两个不在同一个平面上的解理裂纹通过与主解理面相垂直的二次解理形成解理台阶,如图4-5,4-6,4-7所示。
②解理裂纹与螺位错相交截形成台阶。
解理裂纹与螺位错相交产生一个布氏矢量大小的台阶。
裂纹扩展过程中如与多个同号螺位错相交,矢量不断迭加,达到一定程度便产生一个能够观察到的台阶:.裂纹与异号螺位错相交,台阶就抵消或减少,见图4-8。
③解理裂纹之间产生较大的塑性变形,通过撕裂方式连接形成台阶,如图4-9,4-10,4-11所示。
实际解理断裂中二次解理与撕裂方式可能同时存在。
二次解理台阶的高度也随着裂纹扩展不断降低,也可能逐渐被撕裂代替。
④通过基体和孪晶的界面发生开裂连接形成台阶,见图4-12,4-13所示。
2、河流花样的起源及在扩展中的形态变化
①加河流花样起源于有界面存在的地方:晶界、亚晶界、孪晶界,见图4-14、4-15。
②河流花样起源于夹杂物或析出相,见图4-16,4-17。
③河流花样起源于晶粒内部,这是由于解理面一与螺型位错交截所致,图4-18。
河流花样在扩展过程中遇到倾斜晶界、扭转晶界和普通大角度晶界时河流形态发生变化。
裂纹与小角度倾斜晶界相交时,河流连续地穿过晶界。
小角度倾斜晶界是由刃型位错组成。
晶界两侧晶体取向差小,两侧品体的解理
面也只倾斜一个小角度。
因此裂纹穿过时河流花样顺延到下一个晶粒。
图4-19为示意图,图4-20为弹簧断口照片。
河流花样穿过扭转晶界时将发生河流的激增。
扭转晶界又称孪晶界,两侧晶体以晶界为公共界面旋转了一个角度:因此解理裂纹不能简单的穿过晶界,必须重新形核后才能沿新的解理面扩展。
由此造成晶界处河流花样激增。
见图4-21示意图,图4-22为弹簧断口照片。
裂纹穿过普通大角度晶界时,山于品界位错密度高、位向差大、会产生大量的河流,晶界两侧河流台阶的高度差大,见图4-23。
二、“舌状花样”
舌状花样是在解理面上出现“舌头”状的断裂特征。
并不是在所有材料的解理断裂中都能看到舌状花样‘,体心立方晶体在低温和快速加载时及密排夕‘方金属材料中由于孪生是主要形变方式,弹簧断口上经常可见到舌状花样,见图4-24。
舌状花样形成机理示意见图
4-25。
解理主裂纹在100面上沿110方向由A扩展到B,在B处与孪晶相遇,这时它将改变方向沿孪晶与基体的界面112、111方向扩展到C,当与主裂纹之间的材料发生撕裂时沿CD扩展,然后裂纹又回到100面上继续断裂。
如与主裂纹之间的材料发生二次解理则按图示CH方向扩展。
舌状花样成对出现,在弹簧断口中的一个断面上是凸出的,那么在另一断面上是凹的。
舌头表面一般很光滑。
在钢铁材料中常见的舌状花样为100与112,它们之间夹角为35度16。
另外还有112与100夹角为48度12,112与110之间的夹角为125度26。