宁夏银川九中2015届高三上学期第四次月考数学(理)含答案
- 格式:doc
- 大小:647.70 KB
- 文档页数:11
银川一中2015届高三年级第四次月考数 学 试 卷(理)命题人:蔡伟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数iiz +=1(其中i 为虚数单位)的虚部是A .21- B .i 21 C .21 D .i 21- 2. 已知:1: 1.:||12p q x a x ≥-<-若p 是q 的充分不必要条件,则实数a 的取值范围是A .(2,3]B .[2,3]C .(2,3)D .(,3]-∞3.设n S 为等比数列}{n a 的前n 项和,已知342332,32S a S a =-=-,则公比q = A .3 B .4 C .5 D .6 4. 某四棱锥的底面为正方形,其三视图如图所示, 则该四棱锥的体积等于 A .1 B .2 C .3D .45.在ABC ∆中,,,A B C 的对边分别是,,a b c ,其中25,3,sin a b B ===,则角A 的取值一定属于范围A .)2,4(ππB .)43,2(ππ C .),43()4,0(πππ⋃ D .)43,2()2,4(ππππ⋃ 6.为得到函数)32sin(π+=x y 的导函数...图象,只需把函数sin 2y x =的图象上所有点的A .纵坐标伸长到原来的2倍,横坐标向左平移6πB .纵坐标缩短到原来的12倍,横坐标向左平移3πC .纵坐标伸长到原来的2倍,横坐标向左平移125πD .纵坐标缩短到原来的12倍,横坐标向左平移65π7.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 A .BC ∥平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面 ABC8.已知函数2()2f x x x =-,()()20g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得()()21x g x f =,则实数a 的取值范围是A .1(0,]2B .1[,3]2C .(0,3]D .[3,)+∞9.在ABC ∆中,若6·-=AC AB ,则ABC ∆面积的最大值为A .24B .16C .12 D.10.正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则GM 的长为A .12B .22C .33D .6611.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>+=b a by ax z 的值是最大值为12,则23ab+的最小值为A .625 B .38 C . 311 D . 412.已知函数()x f x e ax b =--,若()0f x ≥恒成立,则ab 的最大值为A eB .2eC .eD .2e 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________. 14.已知10(2)x a e x dx =+⎰(e 为自然对数的底数),函数ln ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________. 15.如图,在空间直角坐标系中有棱长为a 的正方体 ABCD -A 1B 1C 1D 1,点M 是线段DC 1上的动点, 则点M 到直线AD 1距离的最小值是________. 16.定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x xϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共5小题,共计70分。
2015年宁夏银川市高考模拟(理科)(4月份)一、选择题:本大题共11小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于()A.M∪N B.M∩N C.(∁U M)∪(∁U N)D.(∁U M)∩(∁U N)【考点】交、并、补集的混合运算.【专题】集合.【分析】由题意可得5∈∁U M,且5∈∁U N;6∈∁U M,且6∈∁U N,从而得出结论.【解析】解:∵5∉M,5∉N,故5∈∁U M,且5∈∁U N.同理可得,6∈∁U M,且6∈∁U N,∴{5,6}=(∁U M)∩(∁U N),故选:D.【点评】本题主要考查元素与集合的关系,求集合的补集,两个集合的交集的定义,属于基础题.2.(5分)已知i是虚数单位,复数z满足=i,则z的模是()A.1 B.C.D.【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把已知的等式变形,然后利用复数代数形式的乘除运算化简,再代入模的公式得答案.【解析】解:由=i,得(1+i)z=i,∴,∴.故选:C.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(5分)在△ABC中,已知∠ACB=90°,CA=3,CB=4,点E是边AB的中点,则•=()A.2 B.C.D.﹣【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据已知条件便可得到,,,带入进行数量积的运算即可得到答案.【解析】解:如图,E是AB中点;∴,;∴=.故选:B.【点评】考查向量加法的平行四边形法则,向量减法的几何意义,以及数量积的运算.4.(5分)阅读如图所示的程序框图,输出A的值为()A.B.C.D.【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的A,i的值,当i=11时,不满足条件i≤10,退出循环,输出A的值为.【解析】解:模拟执行程序框图,可得A=1,i=1A=,i=2满足条件i≤10,A=,i=3满足条件i≤10,A=,i=4满足条件i≤10,A=,i=5满足条件i≤10,A=,i=6满足条件i≤10,A=,i=7满足条件i≤10,A=,i=8满足条件i≤10,A=,i=9满足条件i≤10,A=,i=10满足条件i≤10,A=,i=11不满足条件i≤10,退出循环,输出A的值为,故选:C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.(5分)(2009•山东)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件;空间中直线与平面之间的位置关系.【专题】空间位置关系与距离;简易逻辑.【分析】判充要条件就是看谁能推出谁.由m⊥β,m为平面α内的一条直线,可得α⊥β;反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β.【解析】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.【点评】本题考查线面垂直、面面垂直问题以及充要条件问题,属基本题.6.(5分)有六人排成一排,其中甲只能在排头或排尾,乙丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种【考点】计数原理的应用.【专题】排列组合.【分析】先排甲有两种方法,再把乙丙两人捆绑在一起,看做一个复合元素,和剩下的3人全排即可.【解析】解:先排甲有两种方法,再把乙丙两人捆绑在一起,看做一个复合元素,和剩下的3人全排,故有=96种,故选:C.【点评】本题考查了分步计数原理,相邻问题用捆绑,属于基础题.7.(5分)一个四棱锥的三视图如图所示,那么这个四棱锥的表面积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】计算题;作图题;空间位置关系与距离.【分析】由三视图作直观图,从而结合三视图中的数据求各面的面积即可.【解析】解:由三视图可知,其直观图如右图,S△ABC==1,S△ABE=×2×2=2,S△ACD=×1×=,可知AD⊥DE,AD==,DE=,S△ADE=××=,S梯形BCDE=×(1+2)×1=;故其表面积为S=1+2+++=;故选A.【点评】本题考查了三视图的识图与计算,属于基础题.8.(5分)在平面直角坐标系中,不等式组所表示的平面区域是α,不等式组所表示的平面区域为α,在区域α内随机取一点P,则点P落在区域β内的概率是()A.B.C.D.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出相应的面积,利用几何概型的概率公式即可得到结论.【解析】解:由题意画出图形如图,则平面区域是α是边长为8的三角形ODE,面积为×8×8=32,从区域α中随机取一点P(x,y),P为区域β内的点的面积为═24,∴由几何概型的概率公式可得从区域α中随机取一点P(x,y),则P为区域β内的点的概率是.故选:D.【点评】本题主要考查几何概型的概率计算,根据二元一次不等式组作出对应的平面区域是解决本题的关键,是中档题.9.(5分)点M(1,1)到抛物线y=ax2的准线的距离为2,则a=()A.或B.C.D.4或﹣12【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出抛物线的准线方程,利用点到直线的距离公式求解即可.【解析】解:抛物线y=ax2化为:x2=y,它的准线方程为:y=﹣,点M(1,1)到抛物线y=ax2准线的距离为2,可得|1+|=2,解得a=或﹣.故选:A.【点评】本题考查抛物线的简单性质的应用,基本知识的考查.10.(5分)已知函数f(x)=sin(ωx+ϕ)的部分图象如右图所示,则y=f(x)的图象可由y=sin2x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】利用图象的最低点确定A的值,利用周期确定ω,再根据图象过点(,0),确定φ的值,即可求函数f(x)的解析式,f(x)=sin(2x+)=sin[2(x+)],由此可得结论.【解析】解:由函数图象可得:T=4()=π,故=2,又(,0)在函数图象上,既有:0=sin(2×+ϕ),可解得:ϕ=k,k∈Z,因为,|ϕ|<,所以可得:ϕ=.故:f(x)=sin(2x+)=sin[2(x+)].则y=f(x)的图象可由y=sin2x的图象向左平移个单位得到.故选:D.【点评】本题考查三角函数解析式的确定,考查图象的变换,考查学生分析解决问题的能力,属于中档题.11.(5分)对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解析】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题:本大题共4小题,每小题5分12.(5分)已知双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,则双曲线的离心率是.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,知a=3k,b=2k,c=k,由此能求出双曲线的离心率.【解析】解:因为双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,∴a=3k,b=2k,∴c=k,∴此双曲线的离心率e==.故答案为:.【点评】本题考查双曲线的离心率的求法,解题时要认真审题,注意等价转化思想的合理运用.13.(5分)由函数y=x2的图象与直线y=2x围成的图形的面积是.【考点】定积分在求面积中的应用.【专题】计算题;导数的综合应用.【分析】联立解曲线y=x2及直线y=2x,得它们的交点是O(0,0)和A(2,2),由此可得两个图象围成的面积等于函数y=2x﹣x2在[0,2]上的积分值,根据定积分计算公式加以计算,即可得到所求面积.【解析】解:由曲线y=x2与直线y=2x,解得交点为O(0,0)和A(2,2)因此,曲线y=x2及直线y=2x所围成的封闭图形的面积是S=(2x﹣x2)dx=(x2﹣x3)=.故答案为:.【点评】本题给出曲线y=x2及直线y=2x,求它们围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题.14.(5分)在数列{a n}中,a1=1,a2=2,且a n+2﹣a n=1+(﹣1)n(n∈N*),则a1+a2+a3+…+a51= 676.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】依题意,可求得a1=a3=a5=…=a51=1,{a2n}是以2为首项,2为公差的等差数列,从而可求得a1+a2+a3+…+a51的值.【解析】解:∵数列{a n}中,a1=1,a2=2,且a n+2﹣a n=1+(﹣1)n(n∈N*),∴a3﹣a1=0,a5﹣a3=0,…a51﹣a49=0,∴a1=a3=a5=…=a51=1;由a4﹣a2=2,得a4=2+a2=4,同理可得a6=6,a8=8,…,a50=50;∴a1+a2+a3+…+a51=(a1+a3+a5+…+a51)+(a2+a4+…+a50)=26+=676.故答案为:676.【点评】本题考查数列的求和,着重考查等差数列的判定与求和,突出考查分组求和,属于中档题.15.(5分)直线y=x+m与圆x2+y2=16交于不同的两点M,N,其中O是坐标原点,则实数m的取值范围是(﹣4,﹣2]∪[2,4).【考点】直线和圆的方程的应用.【专题】直线与圆.【分析】设MN的中点为A,则2=+,利用,可得||≥2,利用点到直线的距离公式,可得||,从而求出实数m的取值范围.【解析】解:设MN的中点为A,则OA⊥MN,并且2=+,∵,∴||≤2||,∴≤12,∴≤3,∴16﹣≤3,∴||≥2,∴O到直线MN的距离≥2…①,||=<4…②,由①②解得:﹣4<m<﹣2或2<m<4,故答案为:(﹣4,﹣2]∪[2,4).【点评】本题考查了直线与圆的位置关系以及点到直线的距离问题,考查勾股定理的运用,考查学生的计算能力,属于中档题.三、解答题(本题包括六道小题共计70分)16.(12分)已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC 中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(Ⅰ)由题意可得a=c﹣4、b=c﹣2.又因,,可得,恒等变形得c2﹣9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ,.△ABC的周长f (θ)=|AC|+|BC|+|AB|=.再由,利用正弦函数的定义域和值域,求得f(θ)取得最大值.【解析】解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2.又∵,,∴,∴,恒等变形得c2﹣9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.…(6分)(Ⅱ)在△ABC中,由正弦定理可得,∴,AC=2sinθ,.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|===,…(10分)又∵,∴,∴当,即时,f(θ)取得最大值.…(12分)【点评】本题主要考查正弦定理、余弦定理的应用,正弦函数的定义域和值域,属于中档题.17.(12分)已知在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ACB=,点D是线段BC 的中点.(1)求证:A1C∥平面AB1D;(2)当三棱柱ABC﹣A1B1C1的体积最大时,求直线A1D与平面AB1D所成角θ的正弦值.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)设A1B∩AB1=O,连接OD,利用三角形的中位线定理可得:A1C∥OD,利用线面平行的判定定理即可证明;(2)当三棱柱ABC﹣A1B1C1的底面积最大时,体积最大,利用余弦定理与基本不等式的性质可得:当AC=BC,三角形ABC为正三角形时取最大值,然后建立空间直角坐标系,利用空间向量求直线A1D与平面AB1D所成角θ的正弦值.【解析】(1)证明:如图,设A1B∩AB1=O,连接OD,则OD为三角形A1BC的中位线,∴A1C∥OD,OD⊆平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D;(2)解:当三棱柱ABC﹣A1B1C1的底面积最大时,体积最大,∵2AC•BC﹣AC•BC=AC•BC,∴当AC=BC,三角形ABC为正三角形时面积取最大值,以D为原点建立如图所示坐标系,则D(0,0,0),A(,0,0),B1(0,﹣1,2),,∴=(,0,0),=(0,﹣1,2),,设平面AB1D的法向量为,由,得,取z=1,得y=2.∴,则直线A1D与平面AB1D所成角θ的正弦值为sinθ=||=||=.【点评】本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、余弦定理,考查了推理能力与计算能力,考查了空间想象能力,训练了利用空间向量求线面角,属于中档题.18.(12分)某手机销售商对某市市民进行手机品牌认可度的调查,在已购买某品牌手机的500名市民中,随机抽样100名,按年龄进行统计的频率分布表和频率分布直方图如下:(1)频率分布表中①②应填什么数?补全频率分布直方图,并根据频率分布直方图估计这500名市民的平均年龄;(2)在抽出的这100市民中,按分层抽样抽取20人参加宣传活动,从20人中随机选取2人各赠送一部手机,设这两名市民中年龄低于30岁的人数为X,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【专题】综合题;概率与统计.【分析】(1)利用频率分布表和频率分布直方图能求出频率分布表中的①②位置应填什么数,并补全频率分布直方图,再根据频率分布直方图能统计出这500名志愿者得平均年龄.(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.【解析】解:(1)由题意知频率分布表中的①位置应填数字为:100﹣5﹣20﹣30﹣10=35,②位置应填数字为:=0.30.补全频率分布直方图,如右图所示.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PEX=0×+1×+2×=.【点评】本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)已知直线l:y=x+1,圆O:,直线l被圆截得的弦长与椭圆C:的短轴长相等,椭圆的离心率e=.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(0,)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;直线与圆相交的性质.【专题】综合题.【分析】(Ⅰ)由题设可知b=1,利用,即可求得椭圆C的方程;(Ⅱ)先猜测T的坐标,再进行验证.若直线l的斜率存在,设其方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量的坐标运算公式即可证得.【解析】解:(Ⅰ)则由题设可知b=1,(2分)又e=,∴=,∴a2=2 (3分)所以椭圆C的方程是+y2=1.…(4分)(Ⅱ)若直线l与y轴重合,则以AB为直径的圆是x2+y2=1①若直线l垂直于y轴,则以AB为直径的圆是②…(6分)由①②解得.由此可知所求点T如果存在,只能是(0,1).…(7分)事实上点T(0,1)就是所求的点.证明如下:当直线l的斜率不存在,即直线l与y轴重合时,以AB为直径的圆为x2+y2=1,过点T(0,1);当直线l的斜率存在,设直线方程为,代入椭圆方程,并整理,得(18k2+9)x2﹣12kx﹣16=0(8分)设点A、B的坐标分别为A(x1,y1),B(x2,y2),则x1+x2=,x1x2=∵=(x1,y1﹣1),=(x2,y2﹣1)∴=x1x2+(y1﹣1)(y2﹣1)=(k2+1)x1x2﹣(x1+x2)+=∴,即以AB为直径的圆恒过定点T(0,1).…(11分)综上可知,在坐标平面上存在一个定点T(0,1)满足条件.…(12分)【点评】本小题主要考查椭圆的标准方程、向量的坐标运算、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.20.(12分)设f(x)=x1nx+ax2,a为常数.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2且x l<x2①求证:<a<0②求证:f (x2)>f (x1)>.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出函数f(x)的导数,求得切线的斜率,由两点的斜率公式计算即可得到a=1;(2)①由题意可得f′(x)=0有两个不等的实根x1,x2,且0<x1<x2,设g(x)=lnx+1+2ax,求出导数,对a讨论,分a≥0,a<0,求出单调区间和极值,令极大值大于0,即可得到a 的范围;②由上可知,f(x)在(x1,x2)递增,即有f(x2)>f(x1),求出x1∈(0,1),设h(x)=(xlnx﹣x),0<x<1,求出导数,判断单调性,运用单调性,即可得到所求范围.【解析】解:(1)f(x)=x1nx+ax2的导数为f′(x)=lnx+1+2ax,在x=1处的切线斜率为k=1+2a,切点为(1,a),在x=1处的切线过点A(0,﹣2),则k=1+2a=a+2,解得a=1;(2)证明:①由题意可得f′(x)=0有两个不等的实根x1,x2,且0<x1<x2,设g(x)=lnx+1+2ax,g′(x)=+2a,x>0.当a≥0,则g′(x)>0,g(x)在(0,+∞)递增,不合题意;当a<0时,g′(x)>0解得x<﹣,g′(x)<0解得x>﹣,即有g(x)在(0,﹣)递增,在(﹣,+∞)递减.即有g(﹣)=ln(﹣)>0,解得﹣<a<0;②由上可知,f(x)在(x1,x2)递增,即有f(x2)>f(x1),f′(1)=g(1)=1+2a>0,则x1∈(0,1),由①可得ax1=,即有f(x1)=x1lnx1+ax12=(x1lnx1﹣x1),设h(x)=(xlnx﹣x),0<x<1,h′(x)=lnx<0在(0,1)恒成立,故h(x)在(0,1)递减,故h(x)>h(1)=﹣,由此可得f(x1)>﹣,综上可得,f (x2)>f (x1)>.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,同时考查函数的单调性的运用:求参数的范围和证明不等式,运用构造函数和分类讨论的思想方法及不等式恒成立思想是解题的关键.选做题请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-1:几何证明选讲21.(10分)选修4﹣1:几何证明选讲如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.(1)若MD=6,MB=12,求AB的长;(2)若AM=AD,求∠DCB的大小.【考点】与圆有关的比例线段;圆的切线的性质定理的证明.【专题】计算题.【分析】(1)利用MD为⊙O的切线,由切割线定理以及已知条件,求出AB即可.(2)推出∠AMD=∠ADM,连接DB,由弦切角定理知,∠ADM=∠ABD,通过AB是⊙O 的直径,四边形ABCD是圆内接四边形,对角和180°,求出∠DCB即可.【解析】选修4﹣1:几何证明选讲解:(1)因为MD为⊙O的切线,由切割线定理知,MD2=MA•MB,又MD=6,MB=12,MB=MA+AB,…(2分),所以MA=3,AB=12﹣3=9.…(5分)(2)因为AM=AD,所以∠AMD=∠ADM,连接DB,又MD为⊙O的切线,由弦切角定理知,∠ADM=∠ABD,(7分)又因为AB是⊙O的直径,所以∠ADB为直角,即∠BAD=90°﹣∠ABD.又∠BAD=∠AMD+∠ADM=2∠ABD,于是90°﹣∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.…(8分)又四边形ABCD是圆内接四边形,所以∠BAD+∠DCB=180°,所以∠DCB=120°…(10分)【点评】本题考查圆的内接多边形,切割线定理的应用,基本知识的考查.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(t为参数),当t=1时,曲线C1上的点为A,当t=﹣1时,曲线C1上的点为B.以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求A、B的极坐标;(2)设M是曲线C2上的动点,求|MA|2+|MB|2的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)当t=1时,代入参数方程可得即A,利用,即可得出点A的极坐标,同理可得及其点B的极坐标.(2)由ρ=,化为4ρ2+5(ρsinθ)2=36,利用即可化为直角坐标方程,设曲线C2上的动点M(3cosα,2sinα),可得|MA|2+|MB|2=10cos2α+16,再利用余弦函数的单调性即可得出.【解析】解:(1)当t=1时,代入参数方程可得即A,∴=2,,∴,∴点A的极坐标为.当t=﹣1时,同理可得,点B的极坐标为.(2)由ρ=,化为ρ2(4+5sin2θ)=36,∴4ρ2+5(ρsinθ)2=36,化为4(x2+y2)+5y2=36,化为,设曲线C2上的动点M(3cosα,2sinα),则|MA|2+|MB|2=+=18cos2α+8sin2α+8=10cos2α+16≤26,当cosα=±1时,取得最大值26.∴|MA|2+|MB|2的最大值是26.【点评】本题考查了把极坐标方程化为直角坐标方程、椭圆的标准方程及其参数方程、三角函数基本关系式、余弦函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.选修4-5:不等式选讲23.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.【考点】绝对值不等式的解法;不等式的证明.【专题】计算题;证明题;不等式的解法及应用.【分析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.【解析】(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即有(a+b+c)2≤3,即有|a+b+c|≤;(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,由x≥1得,2x≥3,解得,x≥;由x≤﹣1,﹣2x≥3解得,x≤﹣,由﹣1<x<1得,2≥3,不成立.综上,可得x≥或x≤﹣.则实数x的取值范围是(﹣]∪[).【点评】本题考查柯西不等式的运用,考查不等式恒成立问题,考查绝对值不等式的解法,属于中档题.。
宁夏银川九中高三年级第四次月考试卷理科数学 李淑萍本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22—24题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数11iz i-=+,则z 等于( )A .-iB .iC .2iD .1+i2. 如果0,0a b <>,那么,下列不等式中正确的是( )A.11a b<<22a b < D.||||a b > 3. 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“β⊥m ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知|a |=3,|b |=5,且=12a b ⋅,则向量a 在向量b 上的投影为( ) A .512B .3C .4D .55.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点距离为5,则抛物线方程为( ) A. x y 82=B. xy 82-= C. x y 42=D. x y 42-=6.已知曲线1,27)1(,13)0(,)(24=-=-'-='++=x f f bx ax x x f 则曲线在且处切线的倾斜角为( )A .6πB .-6π C .3π D .4π 7.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
绝密★启用前2015年普通高等学校招生全国统一考试银川一中四模 理科数学(银川一中第四次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}4,3,2,1=U ,集合{}{}3,2,2,1==B A ,则()=⋃B A C U A . {}4,3,1 B. {}4,3 C. {}3 D. {}4 2.已知1ii z+=,则在复平面内,复数z 所对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知向量()1,2a x =,()4,b x =-,则“x =是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知122,,,8a a --成等差数列,1232,,,,8b b b --成等比数列,则212a ab -等于 A.14 B. 12- C. 12 C. 12或12- 5.已知{}2,0,1,3,4a ∈-,{}1,2b ∈,则函数2()(2)f x a x b =-+为增函数的概率是A.25 B. 35C.12D.3106.已知一个几何体的正视图和俯视图如右图所示,正视图是边长为 2a 的正三角形,俯视图是边长为a 的正六边形,则该几何体的侧 视图的面积为 A .223a B .223aC .23aD .23a7.执行如下图的程序框图,则输出的值P =A .12B .10C .8D .68.过抛物线x y 42=的焦点F 的直线交该抛物线于 A ,B 两点,O 为坐标原点. 若|AF |=3,则∆AOB 的面积为 A .22B .2C .223D . 229.设x ,y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,若目标函数z ax by =+(0a >,0b >)的最小值为2,则ab 的最大值是 A .1 B .12 C .16 D .1410.若函数xax x x f 1)(2++=在),21(+∞是增函数,则a 的取值范围是A .[]-1,0 B.[]-∞1, C.[]0,3 D.[]3∞,+ 11.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 A .125π B .3π C .4π D .6π12.已知方程kxx =-|)2cos(|π在(0,+∞)上有两个不同的解a ,b (a <b ),则下面结论正确的是A . sina =acosbB .sina =-acosbC .cosa =bsinbD .sinb =-bsin a第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.213e dx x=⎰. 14.已知定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(1)0f =,则不等式0(2)f x -≥的解集是__________15.已知函数()sin()(0,)2f x x πωϕωϕ=+><的部分图像如图,令),6(πn f a n = 则=++++2014321a a a a . 16.给出下列四个命题:①圆22(2)4x y ++=与圆22(2)(1)9x y -+-=相交;②总体的概率密度函数f (x 2(3)2x --,x ∈R 的图象关于直线 x=3 对称;f (x )的最大值为③已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >; 为R 上的奇函数,则函数)(x f y =的图象一定关于点对称.其中所有正确命题的序号为 .三、解答题(解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知函数)0(2sin 2)sin(3)(2>+-=ωωωm xx x f 的最小正周期为π3,当],0[π∈x 时,函数)(x f 的最小值为0.(1)求函数)(x f 的表达式;(2)在ABC ∆中,若A C A B B C f sin ),cos(cos sin 2,1)(2求且-+==的值.18.(本小题满分12分)在如图所示的多面体中,F E ⊥平面AEB ,AE ⊥EB ,D//F A E ,F//C E B ,C 2D 4B =A =,F 3E =, 2AE =BE =,G 是C B 的中点.(1)求证:D G B ⊥E ;(2)求平面D G E 与平面D F E 所成锐二面角的余弦值.19.(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求随机变量ξ的分布列及其数学期望E (ξ);(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.20.(本小题满分12分)如图,已知椭圆C 的方程为22221x y a b +=(0a b >>),双曲线22221x y a b-=的两条渐近线为1l 、2l .过椭圆C 的右焦点F 作直线l ,使1l l ⊥,又l 与2l 交于点P , 设l 与椭圆C 的两个交点由上至下依次为A ,B .(1)若1l 与2l 的夹角为60,且双曲线的焦距为4,求椭圆C 的方程; (2)求F A AP的最大值.21.(本小题满分12分)定义在R 上的函数()f x 满足222(1)()2(0)2x f f x e x f x -'=⋅+-,21()()(1)24x g x f x a x a =-+-+.⑴ 求函数()f x 的解析式; ⑵ 求函数()g x 的单调区间;⑶ 如果s 、t 、r 满足||||s r t r --≤,那么称s 比t 更靠近r . 当2a ≥且1x ≥时,试比较e x和1x ea -+哪个更靠近ln x ,并说明理由.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1;几何证明选讲如图所示,AB 为圆O 的直径,CB ,CD 为圆O 的切线,B ,D 为切点.⑴ 求证:OC AD //;⑵ 若圆O 的半径为2,求OC AD ⋅的值.23.(本小题满分10分) 选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数).⑴ 以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; ⑵ 已知(2,0),(0,2)A B -,圆C 上任意一点),(y x M ,求ABM ∆面积的最大值.24.(本小题满分10分) 选修4-5:不等式选讲⑴ 已知,a b 都是正数,且a b ≠,求证:3322a b a b ab +>+;⑵ 已知,,a b c 都是正数,求证:222222a b b c c a abc a b c++++≥.银川一中2015届高三第四次模拟考试数学(理科)参考答案一、选择题13. 614. (,1][3,)-∞+∞. 15、0.16、①②③17、【解】 (Ⅰ).1)6sin(22)cos(12)sin(3)(m x m x x x f +-+=+-⋅-=πωωω依题意函数.32,32,3)(==ωπωππ解得即的最小正周期为x f 所以.1)632sin(2)(m x x f +-+=π分所以依题意的最小值为所以时当6.1)632sin(2)(.0,.)(,1)632sin(21,656326,],0[ -π+==≤π+≤π≤π+≤ππ∈x x f m m x f x x x (Ⅱ).1)632sin(,11)632sin(2)(=+∴=-+=ππC C C f22252,..863663622,,2sin cos cos(),212cos sin sin 0,sin 102510sin 1,sin .122Rt C C C ABC A B B B A C A A A A A A πππππππ<+<+==∆+==+--±∴--==-<<∴=而所以解得分在中解得分分18、∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ∴EF AE ⊥,EF BE ⊥ 又AE EB ⊥ ∴,,EB EF EA 两两垂直以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴 建立如图所示的空间直角坐标系由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0)∴(2,2,0)EG =,(2,2,2)BD =-∴22220BD EG ⋅=-⨯+⨯= ∴BD EG ⊥()2由已知得(2,0,0)EB =是平面DEF 的法向量设平面DEG 的法向量为(,,)n x y z = ∵(0,2,2),(2,2,0)ED EG ==∴00ED n EG n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z x y +=⎧⎨+=⎩,令1x =,得(1,1,1)n =-设平面DEG 与平面DEF 所成锐二面角的大小为θ则||cos |cos ,|||||2n EB n EB n EB θ=<>===∴平面DEG 与平面DEF 19、(1)ξ的可能取值为0,1,2,31111(0)43224P ξ==⨯⨯=;3111211111(1)4324324324P ξ==⨯⨯+⨯⨯+⨯⨯=;32112131111(2)43243243224P ξ==⨯⨯+⨯⨯+⨯⨯=;3211(3)4324P ξ==⨯⨯=ξ∴的分布列为1111123()012324424412E ξ=⨯+⨯+⨯+⨯= (2)设 “甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B则32132123331211211211()()4324334333P A C C C ⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11231211()()43318P AB C ⎛⎫=⨯⨯= ⎪⎝⎭…10’∴1()118()1()63P AB P B A P A === 20、解:()1因为双曲线方程为12222=-b y a x所以双曲线的渐近线方程为x a by ±=因为两渐近线的夹角为60且1<ab,所以30POF ∠=所以ab3tan 30== 所以b a 3=因为2c =,所以2222=+b a 所以a =1b =所以椭圆C 的方程为2213x y += ()2因为1l l⊥,所以直线l 的方程为()ay x c b=-,其中c =因为直线2l 的方程为by x a=, 联立直线与2l 的方程解得点2,a ab P c c ⎛⎫⎪⎝⎭ 设||||FA AP λ=,则FA AP λ= 因为点(),0F c ,设点()00,A x y ,则有()20000,,a abx c y x y c c λ⎛⎫-=--⎪⎝⎭解得()2201c a x c λλ+=+,()01ab y c λλ=+因为点()00,A x y 在椭圆22221x ya b+=上,所以()()()()2222222222111c a ab a c b c λλλλ++=++即()()222224221c aa a c λλλ++=+等式两边同除以4a 得22222()(1),(0,1).e e e λλλ++=+∈所以24222222322e e e e e λ-⎛⎫==--++ ⎪--⎝⎭)2331≤-+=-=-所以当22222e e -=-,即e =时,λ1-故||||AP FA 121.解:(1)22'()'(1)22(0)x f x f e x f -=+-,所以'(1)'(1)22(0)f f f =+-,即(0)1f =. 又2(1)(0)2f f e -'=⋅, 所以2'(1)2f e =,所以22()2xf x e x x =+-.(2)22()2x f x e x x =-+,222111()()(1)(1)(1)2444x x x g x f x a x a e x x x a x a e a x ∴=-+-+=+--+-+=--()x g x e a '∴=-.①当0a ≤时,()0g x '>,函数()f x 在R 上单调递增;②当0a >时,由()0x g x e a '=-=得ln x a =,∴(),ln x a ∈-∞时,()0g x '<, ()g x 单调递减;()ln ,x a ∈+∞时,()0g x '>,()g x 单调递增.综上,当0a ≤时,函数()g x 的单调递增区间为(,)-∞+∞;当0a >时, 函数()g x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞.(3)解:设1()ln ,()ln x ep x x q x e a x x-=-=+-, 21'()0e p x x x=--<,∴()p x 在[1,)x ∈+∞上为减函数,又()0p e =, ∴当1x e ≤≤时,()0p x ≥,当x e >时,()0p x <. 11'()x q x ex -=-,121''()0x q x e x-=+>,∴'()q x 在[1,)x ∈+∞上为增函数,又'(1)0q =,∴[1,)x ∈+∞时,'()0q x ≥,∴()q x 在[1,)x ∈+∞上为增函数, ∴()(1)20q x q a ≥=+>.①当1x e ≤≤时,1|()||()|()()x ep x q x p x q x e a x--=-=--, 设1()x e m x e a x -=--,则12'()0x em x e x-=--<, ∴()m x 在[1,)x ∈+∞上为减函数,∴()(1)1m x m e a ≤=--,2a ≥,∴()0m x <,∴|()||()|p x q x <,∴ex 比1x e a -+更靠近ln x . ②当x e >时,11|()||()|()()2ln 2ln x x e p x q x p x q x x e a x e a x---=--=-+--<--,设1()2ln x n x x e a -=--,则12'()x n x e x -=-,122''()0x n x e x-=--<,∴'()n x 在x e >时为减函数,∴12'()'()0e n x n e e e -<=-<,∴()n x 在x e >时为减函数,∴1()()20e n x n e a e -<=--<, ∴|()||()|p x q x <,∴e x 比1x e a -+更靠近ln x . 综上:在2,1a x ≥≥时,e x比1x e a -+更靠近ln x .22.解: (1) 连接CD CB OD BD ,,, 是圆O 的两条切线,OC BD ⊥∴, 又AB 为直径,DB AD ⊥∴,//AD OC .(2)由//AD OC ,DAB COB ∴∠=∠,BAD Rt ∆∴∽Rt COB ∆,AD ABOB OC=,8AD OC AB OB ⋅=⋅=.23.【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1)圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数)所以普通方程为4)4()3(22=++-y x .∴圆C 的极坐标方程:021sin 8cos 62=++-θρθρρ.(2)点),(y x M 到直线AB :02=+-y x 的距离为2|9sin 2cos 2|+-=θθdABM ∆的面积|9)4sin(22||9sin 2cos 2|||21+-=+-=⨯⨯=θπθθd AB S所以ABM ∆面积的最大值为229+24.解:(1)证明:33222()()()()a b a b ab a b a b +-+=+-.因为,a b 都是正数,所以0a b +>. 又因为a b ≠,所以2()0a b ->.于是2()()0a b a b +->,即3322()()0a b a b ab +-+> 所以3322a b a b ab +>+;(2)证明:因为2222,0b c bc a +≥≥,所以2222()2a b c a bc +≥. ①同理2222()2b a c ab c +≥. ② 2222()2c a b a b c+≥. ③ ①②③相加得2222222222()222a b b c c a a bc ab c abc ++≥++ 从而222222()a b b c c a abc a b c ++≥++.由,,a b c 都是正数,得0a b c ++>,因此222222a b b c c a abc a b c++≥++.。
银川九中2019届高三上学期第四次月考试题数学(理)第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U=R ,设函数y=lg(x-1)的定义域为集合A ,函数y=22+x 的值域为集合B ,则A∩(C U B)= ( )A .[1,2]B .[1,2)C .(1,2]D .(1,2)2.已知复数1z i =-,则122--z z z =( )A .2iB .2i -C .2D .2-3.已知平面向量(12)=,a ,(2)m =-,b ,且∥a b ,则23+=a b ( ) A .(510)--,B . (24)--,C .(36)--,D .(48)--,4. 设点M 是线段BC 的中点,点A 在直线BC 外,162=,||||AC AB AC AB -=+,则=||AM ( )A .2B .4C .6D .85.已知数列{}n a 是等差数列,且π2741=++a a a ,则)tan(53a a +的值为( ) A .3B .3-C .33D .33-6.若α是锐角,且cos (πα+)=﹣,则sin α的值等于( )A...7. 设>0,>0.a b 3a与3b的等比中项,则a b +的最小值为( ) A .8 B .4 C .1 D .148.在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( )A. 1B.2 C .3 D .09.函数2()sin cos f x x x x =在区间42ππ⎡⎤⎢⎥⎣⎦,上的最大值是( )A .1B .12+C .32D .111已知数列{}{}n n b a ,满足11=a 且1,+n n a a 是函数n n x b x x f 2)(2+-=的两个零点,则10b 等于( ) A .24B .32C .48D .6412.若函数()xxf x ka a-=-(a >0且1a ≠)在(,-∞+∞)上既是奇函数又是增函数,则()log ()a g x x k =+的图象是( )第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题(本大题共4小题,每题5分,共20分)13.已知正项等比数列{n a }的前n 项和为S n,且8,23221==a a a a ,则S10= __________14.设向量()()cos ,1,2,sin a b αα=-=,若a b ⊥,则tan 4πα⎛⎫-⎪⎝⎭=__________ 15. 在△ABC 中,a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边,若222sin A sin C sin B AsinC +-=,则角B 为16.已知()f x 为R 上的偶函数,对任意x R ∈都有(6)()(3)f x f x f +=+且当[]12,0,3x x ∈,12x x ≠ 时,有1212()()0f x f x x x ->-成立,给出四个命题:①(3)0f = ② 直线6x =-是函数()y f x =的图像的一条对称轴③ 函数()y f x =在[]9,6--上为增函数 ④ 函数()y f x =在[]9,9-上有四个零点 其中所有正确命题的序号为___________三.解答题(本大题共6小题,共70分.必须写出相应的文字说明、过程或步骤)17(本题满分12分)在等差数列{}n a 中,31=a ,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且1222=+S b ,22b S q =. (1)求n a 与n b ;(2)设数列{}n c 满足1n nc S =,求{}n c 的前n 项和n T . 18.(本小题满分12分)已知向量1(sin ,1),(3cos ,)2a xb x =-=-,函数()()2f x a b a =+⋅-. (1)求函数()f x 的最小正周期;(2)已知a 、b 、c 分别为ABC ∆内角A、B 、C 的对边, 其中A 为锐角,4a c ==且()1f A =,求,A b 和ABC ∆的面积S .19. (本小题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件..,需另投入成本为)(x C ,当 年产量不足80千件时,x x x C 1031)(2+=(万元).当年产量不小于80千件时,14501000051)(-+=xx x C (万元).每件..商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (Ⅰ)写出年利润)(x L (万元)关于年产量x (千件..)的函数解析式; (Ⅱ)年产量为多少千件..时,该厂在这一商品的生产中所获利润最大?20. (本小题满分12分)已知{}n a 是正数组成的数列,11a =,且点1)()n a n +∈*N 在函数21y x =+的图象上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足11b =,12n a n n b b +=+,求证:221n n n b b b ++⋅<.21. (本小题满分12分)已知函数:()ln 3(0)f x x ax a =--≠ (1)讨论函数()f x 的单调性;(2)若对于任意的[1,2]a ∈,若函数23()[2()]2x g x x m f x '=+-在 区间()3,a 上有最值,求实数m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分) 选修4—1;几何证明选讲.如图,已知PE 切⊙O 于点E ,割线PBA 交⊙O 于A 、B 两点, ∠APE 的平分线和AE 、BE 分别交于点C 、D .求证:(Ⅰ)CE DE =;(Ⅱ)CA PECE PB=.23.(本小题满分10分)选修4—4;坐标系与参数方程.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为πcos 13ρθ⎛⎫-= ⎪⎝⎭,M ,N 分别为C 与x 轴,y 轴的交点.(Ⅰ)写出C 的直角坐标方程,并求M ,N 的极坐标; (Ⅱ)设MN 的中点为P ,求直线OP 的极坐标方程. 24.(本小题满分10分)选修4—5;不等式选讲.设a ,b 是非负实数,求证:3322)a b a b ++.参考答案: 一.选择题二.填空题13.1023 14.31 15.6π16. ①②④ 三.解答题17(本题满分12分)解:1)设{}n a 的公差为d .因为⎪⎩⎪⎨⎧==+,,122222b S q S b 所以⎪⎩⎪⎨⎧+==++.,q d q d q 6126 解得 3=q 或4-=q (舍),3=d .故()3313n a n n =+-= ,13-=n n b . (2)由(1)可知,()332n n n S +=, 所以()122113331n n c S n n n n ⎛⎫===- ⎪++⎝⎭. 故()21111121211322313131n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ (18)19.解:(Ⅰ)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.05×1000x 万元,依题意得: 当800<<x 时,2501031)100005.0()(2---⨯=x x x x L 25040312-+-=x x .………………………………2分当80≥x 时,25014501000051)100005.0()(-+--⨯=xx x x L =⎪⎭⎫ ⎝⎛+-x x 100001200.………………………………………………4分所以⎪⎪⎩⎪⎪⎨⎧≥⎪⎭⎫ ⎝⎛+-<<-+-=).80(100001200),800(2504031)(2x x x x x x x L …………6分(Ⅱ)当800<<x 时,.950)60(31)(2+--=x x L此时,当60=x 时,)(x L 取得最大值950)60(=L 万元. ………………8分当80≥x 时,100020012001000021200100001200)(=-=⋅-≤⎪⎭⎫⎝⎛+-=xx x x x L此时,当xx 10000=时,即100=x 时)(x L 取得最大值1000万元.………………11分 1000950<所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元. ………………………………………………………………………………………………12分 20.解法一:(Ⅰ)由已知得11n n a a +=+,即11n n a a +-=,又11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列. 故1(1)1n a n n =+-⨯=.(Ⅱ)由(Ⅰ)知:n a n =从而12n n n b b +-=,112211()()()n n n n n b b b b b b b b ---=-+-++-+…122221n n --=++++…122112n n -==--. 因为221221(21)(21)(21)n n n n n n b b b ++++⋅-=---- 222221(2221)(2221)n n n n n ++++=--+--+5242n n =-⋅+⋅ 20n =-<,所以221n n n b b b ++⋅<.解法二:(Ⅰ)同解法一. (Ⅱ)因为11b =,21221111(2)(2)n n n n n n n n b b b b b b ++++++-=-+-11112222n n n n n n b b ++++=-- 112(2)n n n b ++=- 12(22)n n n n b +=+- 2(2)n n n b =- =…12(2)n b =-20n =-<,所以221n n n b b b ++<.21、解 (1)由已知得()f x 的定义域为(0,)+∞, 且 1()f x a x'=-, …………2分 当0a >时,()f x 的单调增区间为1(0,)a ,减区间为1(,)a+∞;当0a <时,()f x 的单调增区间为(0,)+∞,无减区间; ……6分(2)2332()[2()](),22x mg x x m f x x a x x '=+-=++- 2()3(2)1,g x x m a x '∴=++- ()g x 在区间(,3)a 上有最值,()g x ∴在区间(,3)a 上总不是单调函数,又()0(0)1(3)0g a g g '<⎧'=-∴⎨'>⎩ (9)由题意知:对任意22[1,2],()3(2)1510a g a a m a a a ma '∈=++⋅-=+-<恒成立,21515,a m a a a-∴<=-因为[1,2]a ∈ 192m ∴<-对任意[]2,1∈a ,()063263/>++=a m g 恒成立∴a a m 23263266--=-->∵[]2,1∈a ∴332->m 321932m ∴-<<-………………………………12分.22. (Ⅰ)证明:PE 切⊙O 于点E ,A BEP ∴∠=∠PC 平分A CPA BEP DPE ∴∠+∠=∠+∠,ECD A CPA EDC BEP DPE ∠=∠+∠∠=∠+∠,,ECD EDC EC ED ∴∠=∠∴=(Ⅱ)证明:,,PDB EDC EDC ECD PDB PCE ∠=∠∠=∠∠=∠ ,BPD EPC PBD ∴∠=∠∴∆∽PEC ∆,PE PCPB PD∴=同理PDE ∆∽PCA ∆,PC CAPD DE ∴=PE CAPB DE∴=,CA PEDE CE CE PB=∴=23解:(Ⅰ)由πcos 13ρθ⎛⎫-= ⎪⎝⎭得1cos 12ρθθ⎛⎫+= ⎪ ⎪⎝⎭.从而C 的直角坐标方程为1122x y +=,即2x =. 0θ=时,2ρ=,所以(20)M ,.π2θ=时,ρ=π2N ⎫⎪⎪⎝⎭,.(Ⅱ)M 点的直角坐标为(2,0),N 点的直角坐标为0⎛⎝⎭.所以P 点的直角坐标为13⎛ ⎝⎭,,则P 点的极坐标为π36⎛⎫⎪⎪⎝⎭,. 所以直线OP 的极坐标方程为π()6θρ=∈-∞+∞,,. 24.解:证明:由a ,b 是非负实数,作差得3322)a b a b a b ++=+ 55]=-当a b ≥55≥,得55]0-≥;当a b <<55<,得55]0->;所以3322)a b a b ++.。
银川2024届高三年级第四次月考数学(理科)(答案在最后)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{05}A xx =<<∣,104x B x x ⎧⎫+=≤⎨⎬-⎩⎭,则A B = ()A.[]1,4- B.[)1,5- C.(]0,4 D.()0,4【答案】D 【解析】【分析】由分式不等式的解法,解出集合B ,根据集合的交集运算,可得答案.【详解】由不等式104x x +≤-,则等价于()()1404x x x ⎧+-≤⎨≠⎩,解得14x -≤<,所以{}14B x x =-≤<,由{}05A x x =<<,则{}04A B x x ⋂=<<.故选:D.2.复平面上,以原点为起点,平行于虚轴的非零向量所对应的复数一定是()A.正数 B.负数C.实部不为零的虚数D.纯虚数【答案】D 【解析】【分析】根据向量的坐标写出对应复数,然后判断即可.【详解】由题意可设()()0,0OZ a a =≠,所以对应复数为()i 0a a ≠,此复数为纯虚数,故选:D.3.已知某几何体的三视图如图所示,则该几何体的体积为()A.20B.32C.203D.323【答案】D 公众号:全元高考【解析】【分析】先根据几何体的三视图得出该几何体的直观图,再由几何体的特征得出几何体的体积.【详解】解:如图,根据几何体的三视图可以得出该几何体是底面为矩形的四棱锥E ABCD -,该几何体的高为EF ,且4EF =,所以该几何体的体积为13224433E ABCD V -=⨯⨯⨯=,故选:D.4.“不以规矩,不能成方圆”出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,是古人用来测量、画圆和方形图案的工具.敦煌壁画就有伏羲女娲手执规矩的记载(如图(1)).今有一块圆形木板,以“矩”量之,如图(2).若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角α满足3cos 5α=,则这块四边形木板周长的最大值为()A.20cmB.C.D.30cm【答案】D 【解析】【分析】作出图形,利用余弦定理结合基本不等式可求得这个矩形周长的最大值.【详解】由题图(2)cm =.设截得的四边形木板为ABCD ,设A α∠=,AB c =,BD a =,AD b =,BC n =,CD m =,如下图所示.由3cos 5α=且0πα<<可得4sin 5α=,在ABD △中,由正弦定理得sin aα=,解得a =.公众号:全元高考在ABD △中,由余弦定理,得2222cos a b c bc α=+-,所以,()()()()222222616168055545b c b c b c bc b c b c ++=+-=+-≥+-⨯=,即()2400b c +≤,可得020b c <+≤,当且仅当10b c ==时等号成立.在BCD △中,πBCD α∠=-,由余弦定理可得()222226802cos π5a m n mn m n mn α==+--=++()()()()22224445545m n m n m n mn m n ++=+-≥+-⨯=,即()2100m n +≤,即010m n <+≤,当且仅当5m n ==时等号成立,因此,这块四边形木板周长的最大值为30cm .故选:D.5.若13α<<,24β-<<,则αβ-的取值范围是()A.31αβ-<-<B.33αβ-<-<C.03αβ<-<D.35αβ-<-<【答案】B 【解析】【分析】利用不等式的性质求解.【详解】∵24β-<<,∴04β≤<,40β-<-≤,又13α<<,∴33αβ-<-<,故选:B.6.已知向量(1,1)a = ,(,1)b x =- 则“()a b b +⊥”是“0x =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意,利用向量垂直的坐标表示,列出方程求得0x =或=1x -,结合充分条件、必要条件的判定方法,即可求解.【详解】由向量(1,1)a = ,(,1)b x =-,可得(1,0)a b x +=+r r ,若()a b b +⊥,可得()(1)0a b b x x +⋅=+= ,解得0x =或=1x -,所以()a b b +⊥是0x =的必要不充分条件.故选:B.7.“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,它在很多特殊领域发挥了超常的贡献值.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).现以边长为4的正三角形作一个“莱洛三角形”,则此“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【答案】A 【解析】【分析】求出正三角形的面积和弓形的面积,进而求出“莱洛三角形”的面积.【详解】正三角形的面积为21π4sin 23⨯=圆弧的长度为π4π433l =⨯=,故一个弓形的面积为18π423l ⨯-=-,故“莱洛三角形”的面积为8π38π3⎛-+=- ⎝.故选:A8.若数列{}n a 满足11a =,1121n n a a +=+,则9a =()A.10121- B.9121- C.1021- D.921-【答案】B 【解析】【分析】根据题意,由递推公式可得数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,即可得到数列{}n a 的通项公式,从而得到结果.【详解】因为11a =,1121n n a a +=+,所以111121n n a a +⎛⎫+=+ ⎪⎝⎭,又1112a +=,所以数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,所以112n n a +=,即121n n a =-,所以99121a =-.故选:B9.如图,圆柱的轴截面为矩形ABCD ,点M ,N 分别在上、下底面圆上,2NB AN =,2CM MD =,2AB =,3BC =,则异面直线AM 与CN 所成角的余弦值为()A.10B.4C.5D.20【答案】D 【解析】【分析】作出异面直线AM 与CN 所成角,然后通过解三角形求得所成角的余弦值.【详解】连接,,,,DM CM AN BN BM ,设BM CN P ⋂=,则P 是BM 的中点,设Q 是AB 的中点,连接PQ ,则//PQ AM ,则NPQ ∠是异面直线AM 与CN 所成角或其补角.由于 2NB AN =, 2CMDM =,所以ππ,36BAN NBA ∠=∠=,由于2AB =,而AB 是圆柱底面圆的直径,则AN BN ⊥,所以1,AN BN ==,则122AM PQ AM ====,12CN PN CN ====,而1QN =,在三角形PQN中,由余弦定理得1010313144cos 20NPQ +-+-∠==.故选:D10.已知n S 是等差数列{}n a 的前n 项和,且70a >,690a a +<则()A.数列{}n a 为递增数列B.80a <C.n S 的最大值为8SD.140S >【答案】B 【解析】【分析】由70a >且78690a a a a +=+<,所以80a <,所以公差870d a a =-<,所以17n ≤≤时0n a >,8n ≥时0n a <,逐项分析判断即可得解.【详解】由70a >且78690a a a a +=+<,所以80a <,故B 正确;所以公差870d a a =-<,数列{}n a 为递减数列,A 错误;由0d <,70a >,80a <,所以17n ≤≤,0n a >,8n ≥时,0n a <,n S 的最大值为7S ,故C 错误;114147814()7()02a a S a a +==+<,故D 错误.故选:B11.银川一中的小组合作学习模式中,每位参与的同学都是受益者,以下这道题就是小组里最关心你成长的那位同桌给你准备的:中国古代数学经典《九章算术》系统地总结了战国秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为3,则阳马P ABCD -的外接球的表面积等于()A.15πB.16πC.17πD.18π【答案】C 【解析】【分析】因条件满足“墙角”模型,故可构建长方体模型求解外接球半径,利用公式即得.【详解】如图,因PA ⊥平面ABCE ,AD DE ⊥,故可以构造长方体ADEF PQRS -,易得:长方体ADEF PQRS -的外接球即鳖臑P ADE -的外接球,设球的半径为1R ,PA x =,由12PE R ==,且314π33R =,解得:1R =, 3.x =又因四边形ABCD 为正方形,阳马P ABCD -的外接球即以,,PA AB AD为三条两两垂直的棱组成的正四棱柱的外接球,设其半径为2R22R ==,解得:2172R =故阳马P ABCD -的外接球的表面积为2224π4π(17π.2R =⨯=故选:C.12.若曲线ln y x =与曲线22(0)y x x a x =++<有公切线,则实数a 的取值范围是()A.(ln 21,)--+∞B.[ln 21,)--+∞C.(ln 21,)-++∞D.[ln 21,)-++∞【答案】A 【解析】【分析】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,然后利用导数的几何意义表示出切线方程,则可得21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,再构造函数,然后利用导数可求得结果.【详解】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,由()ln f x x =,得1()f x x '=,所以公切线的斜率为11x ,所以公切线方程为1111ln ()-=-y x x x x ,化简得111(ln 1)y x x x =⋅+-,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,由2()2(0)g x x x a x =++<,得()22g x x '=+,则公切线的斜率为222x +,所以公切线方程为22222(2)(22)()y x x a x x x -++=+-,化简得2222(1)y x x x a =+-+,所以21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,由1>0x ,得210x -<<,令2()ln(22)1(10)F x x x x =-+--<<,则1()201F x x x '=-<+,所以()F x 在(1,0)-上递减,所以()(0)ln 21F x F >=--,所以由题意得ln 21a >--,即实数a 的取值范围是(ln 21,)--+∞,故选:A【点睛】关键点点睛:此题考查导数的几何意义,考查导数的计算,考查利用导数求函数的最值,解题的关键是利用导数的几何意义表示出公切线方程,考查计算能力,属于较难题.二、填空题:本大题共4小题,每小题5分,共20分.13.若实数,x y 满足约束条件4,2,4,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则2z x y =-+的最大值为________.【答案】4【解析】【分析】依题意可画出可行域,并根据目标函数的几何意义求出其最大值为4.【详解】根据题意,画出可行域如下图中阴影部分所示:易知目标函数2z x y =-+可化为2y x z =+,若要求目标函数z 的最大值,即求出2y x z =+在y 轴上的最大截距即可,易知当2y x =(图中虚线所示)平移到过点A 时,截距最大,显然()0,4A ,则max 4z =,所以2z x y =-+的最大值为4.故答案为:414.已知偶函数()f x 满足()()()422f x f x f +=+,则()2022f =__________.【答案】0【解析】【分析】由偶函数的定义和赋值法,以及找出函数的周期,然后计算即可.【详解】令2x =-,则()()()2222f f f =-+,又()()22f f -=,所以()20f =,于是()()()422f x f x f +=+化为:()()4f x f x +=,所以()f x 的周期4T =,所以()()()20225054220f f f =⨯+==.故答案为:0.15.在ABC 中,已知3AB =,4AC =,3BC =,则BA AC ⋅的值为________.【答案】8-【解析】【分析】根据数量积的定义结合余弦定理运算求解.【详解】由题意可得:cos ⋅=-⋅=-⋅∠uu r uuu r uu u r uuu r uu u r uuu rBA AC AB AC AB AC A22222291698222+-+-+-=-⋅⨯=-=-=-⋅AB AC BC AB AC BC AB AC AB AC ,即8BA AC ⋅=-.故答案为:8-.16.将函数sin y x =的图象向左平移π4个单位长度,再把图象上的所有点的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()f x ,已知函数()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则ω的取值范围为__________.【答案】150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】根据函数图像平移变换,写出函数()y f x =的解析式,再由函数()y f x =在区间π3π,24⎛⎫ ⎪⎝⎭上单调递增,列出不等式组求出ω的取值范围即可【详解】将函数sin y x =的图象向左平移π4个单位长度得到πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1(0)ωω>倍(纵坐标不变),得到函数()πsin 4y f x x ω⎛⎫==+⎪⎝⎭的图象, 函数()y f x =在区间π3π,24⎛⎫⎪⎝⎭上单调递增,所以3ππ242T ≥-,即ππ4ω≥,解得04ω<≤,①又πππ3ππ24444x ωωω+<+<+,所以πππ2π2423πππ2π442k k ωω⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩,解得3184233k k ω-+≤≤+,②由①②可得150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦,故答案为:150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.如图,在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别是1AA ,11C D 的中点,过D ,M ,N 三点的平面与正方体的下底面1111D C B A 相交于直线l .(1)画出直线l 的位置,保留作图痕迹,不需要说明理由;(2)求三棱锥D MNA -的体积.【答案】(1)答案见解析(2)324a 【解析】【分析】(1)延长DM 与11D A 的延长线交于E ,连接NE 即为所求;(2)根据D MNA N DAM V V --=结合三棱锥的体积公式求解出结果.【小问1详解】如图所示直线NE 即为所求:依据如下:延长DM 交11D A 的延长线于E ,连接NE ,则NE 即为直线l 的位置.11E DM D A ∈ ,E DM ∴∈⊂平面DMN ,11E D A ∈⊂平面1111D C B A ,E ∴∈平面DMN ⋂平面1111D C B A ,又由题意显然有N ∈平面DMN ⋂平面1111D C B A ,EN ∴⊂平面DMN ⋂平面1111D C B A ,则NE 即为直线l 的位置.【小问2详解】因为D MNA N DAM V V --=,所以3111112332224D MNA DAMa aa V ND S a -⨯=⨯⨯=⨯⨯= .18.已知数列{}n a 是等比数列,满足13a =,424a =,数列{}nb 满足14b =,422b =,设n n nc a b =-,且{}n c 是等差数列.(1)求数列{}n a 和{}n c 的通项公式;(2)求{}n b 的通项公式和前n 项和n T .【答案】18.13·2n n a -=,2n c n =-19.1322n n b n -=⋅+-,21332322=⋅-+-n n T n n 【解析】【分析】(1)根据等差数列、等比数列定义求解;(2)先写出数列{}n b 的通项公式,再分组求和即可求解.【小问1详解】设等比数列{}n a 的公比为q ,因为13a =,34124a a q ==,所以2q =,即132n n a -=⋅,设等差数列{}n c 公差为d ,因为1111c a b =-=-,444132c a b c d =-=+=,所以1d =,即2n c n =-.【小问2详解】因为n n n c a b =-,所以n n n b a c =-,由(1)可得1322n n b n -=⋅+-,设{}n b 前n 项和为n T ,()()131242212-=⋅+++⋅⋅⋅++-++⋅⋅⋅+n n T n n 21232122n n n n -+=⋅+--21332322n n n =⋅-+-.19.为践行两会精神,关注民生问题,某市积极优化市民居住环境,进行污水排放管道建设.如图是该市的一矩形区域地块ABCD ,30m AB =,15m AD =,有关部门划定了以D 为圆心,AD 为半径的四分之一圆的地块为古树保护区.若排污管道的入口为AB 边上的点E ,出口为CD 边上的点F ,施工要求EF 与古树保护区边界相切,EF 右侧的四边形BCFE 将作为绿地保护生态区. 1.732≈,长度精确到0.1m ,面积精确到20.01m )(1)若30ADE ∠=︒,求EF 的长;(2)当入口E 在AB 上什么位置时,生态区的面积最大?最大是多少?【答案】(1)17.3m(2)AE =2255.15m 【解析】【分析】(1)根据DH HE ⊥得Rt Rt DHE DAE ≅ ,然后利用锐角三角函数求出EF 即可;(2)设ADE θ∠=,结合锐角三角函数定义可表示,AE HF ,然后表示出面积,结合二倍角公式化简,再利用基本不等式求解.【小问1详解】设切点为H ,连结DH ,如图.15DH DA == ,DA AE ⊥,DH HE ⊥,Rt Rt DHE DAE ∴≅△△;30HDE ADE HDF ∴∠=∠=∠=︒;15tan 3015tan 3017.3m EF EH HF ∴=+=︒+︒≈.【小问2详解】设ADE θ∠=,则902EDH θ∠=︒-,15tan AE θ∴=,()15tan 902HF θ︒=-.()1111515tan 1515tan 1515tan 902222ADE DHE DHF AEFD S S S S θθθ=+=⨯⨯++⨯⨯+⨯⨯︒-△△△梯形 2225111tan 31225tan 225tan 225tan 2tan 222tan 44tan θθθθθθθ⎛⎫-⎛⎫=+=+⨯=+ ⎪ ⎪⎝⎭⎝⎭22513tan 4tan 2θθ⎛⎫=+≥⎪⎝⎭,当且仅当tan 3θ=,即30θ=︒时,等号成立,30152ABCD BCFE AEFD S S S ∴=-=⨯-梯形梯形矩形,15tan AE θ∴==时,生态区即梯形BCEF 的面积最大,最大面积为2450255.15m 2-≈.20.已知向量()π2cos ,cos21,sin ,16a x x b x ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭.设函数()1,R 2f x a b x =⋅+∈ .(1)求函数()f x 的解析式及其单调递增区间;(2)将()f x 图象向左平移π4个单位长度得到()g x 图象,若方程()21g x n -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解12,x x ,求实数n 的取值范围,并求()12sin2x x +的值.【答案】(1)()πsin 26f x x ⎛⎫=-⎪⎝⎭,()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)实数n的取值范围是)1,1-,()12sin22x x +=【解析】【分析】(1)利用向量数量积的坐标公式和三角恒等变换的公式化简即可;(2)利用函数的平移求出()g x 的解析式,然后利用三角函数的图像和性质求解即可.【小问1详解】由题意可知()1π1112cos sin cos212cos sin cos cos2262222f x a b x x x x x x x ⎛⎫⎛⎫=⋅+=⋅+--+=⋅+-- ⎪ ⎪ ⎪⎝⎭⎝⎭21cos211cos cos cos2=sin2cos22222x x x x x x x +=⋅+--+--1πsin2cos2sin 2226x x x ⎛⎫=-=- ⎪⎝⎭()πsin 26f x x ⎛⎫∴=- ⎪⎝⎭.由πππ2π22π,Z 262k x k k -+≤-≤+∈,可得ππππ,Z 63k x k k -+≤≤+∈,∴函数()f x 的单调增区间为()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】()ππππsin 2sin 24463g x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ2π22π,Z 232k x k k -+<+<+∈ ,得5ππππ,Z 1212k x k k -+<<+∈,()πsin 23g x x ⎛⎫∴=+ ⎪⎝⎭在区间()5πππ,πZ 1212k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,同理可求得()πsin 23g x x ⎛⎫=+ ⎪⎝⎭在区间()π7ππ,πZ 1212k k k ⎛⎫++∈ ⎪⎝⎭上单调递减,且()g x 的图象关于直线ππ,Z 122k x k =+∈对称,方程()21g x n -=,即()12n g x +=,∴当π0,2x ⎡⎤∈⎢⎥⎣⎦时,方程()12n g x +=有两个不同的解12,x x ,由()g x 单调性知,()g x 在区间π0,12⎡⎤⎢⎥⎣⎦上单调递增,在区间π12π,2⎡⎤⎢⎥⎣⎦上单调递减,且()πππ0,1,,261222g g g g ⎛⎫⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故当31122n +≤<时,方程()12n g x +=有两个不同的解12,,x x11n -≤<,实数n 的取值范围是)1,1-.又()g x 的图象关于直线π12x =对称,12π212x x +∴=,即()1212π3,sin262x x x x +=∴+=.21.已知函数()ln 1,R f x x ax a =-+∈.(1)若0x ∃>,使得()0f x ≥成立,求实数a 的取值范围;(2)证明:对任意的2222*22221223341N ,e,e 112233k k k k k+++++∈⨯⨯⨯⨯<++++ 为自然对数的底数.【答案】(1)1a ≤;(2)证明见解析.【解析】【分析】(1)变形不等式()0f x ≥,分离参数并构造函数,再求出函数的最大值即得.(2)由(1)的信息可得ln 1(1)x x x <->,令221(N )x k k k k k*+∈+=+,再利用不等式性质、对数运算、数列求和推理即得.【小问1详解】函数()ln 1f x x ax =-+,则不等式()ln 10ln 1x f x ax x a x +≥⇔≤+⇔≤,令ln 1()x g x x+=,求导得2ln ()xg x x'=-,当(0,1)x ∈时,()0g x '>,函数()g x 递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 递减,因此当1x =时,max ()1g x =,依题意,1a ≤,所以实数a 的取值范围是1a ≤.【小问2详解】由(1)知,当1x >时,()(1)g x g <,即当1x >时,ln 1x x <-,而当N k *∈时,222111111()11k k k k k k k k ++=+=+->+++,因此2211111ln 1()111k k k k k k k k ++<+--=-+++,于是222222221223341ln ln ln ln 112233k k k k +++++++++++++ 11111111(1)()()()112233411k k k <-+-+-++-=-<++ ,即有222222*********ln()1112233k k k k +++++⨯⨯⨯⨯<++++ ,所以222222*********e 112233k k k k+++++⨯⨯⨯⨯<++++ .【点睛】结论点睛:函数()y f x =的定义区间为D ,(1)若x D ∀∈,总有()m f x <成立,则min ()m f x <;(2)若x D ∀∈,总有()m f x >成立,则max ()m f x >;(3)若x D ∃∈,使得()m f x <成立,则max ()m f x <;(4)若x D ∃∈,使得()m f x >成立,则min ()m f x >.(二)选考题:共10分.请考生在第22、23题中任选一道作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()2π3θρ=∈R .(1)求C 的普通方程和直线l 的直角坐标方程;(2)若点P 是C 上的一点,求点P 到直线l 的距离的最小值.【答案】(1)C 的普通方程2212x y -=;直线l0y +=(2【解析】【分析】(1)利用消参法求C 的普通方程,根据极坐标可知直线l 表示过坐标原点O ,倾斜角为2π3的直线,进而可得斜率和直线方程;(2)设33,P t t t t ⎛⎫+- ⎪⎝⎭,利用点到直线的距离结合基本不等式运算求解.【小问1详解】因为曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),两式平方相减得22223312x y t t t t ⎛⎫⎛⎫-=+--= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程2212x y -=;又因为直线l 的极坐标方程为()2π3θρ=∈R ,表示过坐标原点O ,倾斜角为2π3的直线,可得直线l的斜率2πtan 3k ==,所以直线l的直角坐标方程y =0y +=.【小问2详解】由题意可设33,P t t t t ⎛⎫+- ⎪⎝⎭,设点33,P t t t t ⎛⎫+- ⎪⎝⎭到直线l0y +=的距离为d ,则d =当且仅当))311t t+=,即(232t=-时,等号成立,所以点P 到直线l .【选修4-5:不等式选讲】23.已知函数()22f x x x =-++.(1)求不等式()24f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c ,满足()a b c k +=,求证:22228a b c ++≥.【答案】(1)(,0]-∞(2)证明见解析【解析】【分析】(1)根据题意分<2x -、22x -≤≤和2x >三种情况解不等式,综合可得出原不等式的解集;(2)利用绝对值三角不等式可求得()f x 的最小值,再利用基本不等式可证得所证不等式成立.【小问1详解】由题意可知:2,2()224,222,2x x f x x x x x x -<-⎧⎪=-++=-≤≤⎨⎪>⎩,①当<2x -时,不等式即为224x x -≥+,解得1x ≤-,所以<2x -;②当22x -≤≤时,不等式即为424x ≥+,解得0x ≤,所以20x -≤≤;③当2x >时,不等式即为224x x ≥+,无解,即x ∈∅;综上所示:不等式()24f x x ≥+的解集为(,0]-∞.【小问2详解】由绝对值不等式的性质可得:()22(2)(2)4=-++≥--+=f x x x x x ,当且仅当22x -≤≤时,等号成立,所以()f x 取最小值4,即4k =,可得()4+=a b c ,即4ab ac +=,所以()()22222222228a b c a bac ab ac ++=+++≥+=当且仅当22224ab ac a b b c +=⎧⎪=⎨⎪=⎩,即a b c ===时,等号成立.。
银川市第九中学2015届高三上学期第四次月考文科数学试题1.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )A .若a 2+b 2≠0,则a ≠0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0D .若a ≠0或b ≠0,则a 2+b 2≠02.等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .243.设直线m 与平面α相交但不垂直,则下列说法中正确的是( )A .在平面α内有且只有一条直线与直线m 垂直B .过直线m 有且只有一个平面与平面α垂直C .与直线m 垂直的直线不可能与平面α平行D .与直线m 平行的平面不可能与平面α垂直4.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π3B.π4 C.π6 D.π125.已知向量a 、b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=( )A .3 2B .2 2 C. 2 D .16.设z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( ) A .-3 B .-2 C .-1 D .07.一几何体的三视图如图所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π8.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x 9.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=e x(x +1),给出下列命题: ①当x >0时,f (x )=e x (1-x ); ②函数f (x )有两个零点;③f(x)>0的解集为(-1, 0)∪(1,+∞); ④∀x 1,x 2∈R ,都有|f(x 1)-f(x 2)|<2. 其中正确命题的个数是( )A .1B .2C .3D .4 10.据市场调查,某种商品一年中12个月的价格与月份的关系可以近似地用函数f (x )=A sin(ωx +φ)+7 (A >0,ω>0,|φ|<π2)来表示(x 为月份),已知3月份达到最高价9万元,7月份价格最低,为5万元,则国庆节期间的价格约为( )A .4.2万元B .5.6万元C . 7万元D .8.4万元二、填空题(本大题共4小题,每小题5分)13.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 14. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β. (1)当满足条件________时,有m ∥β;(2)当满足条件________时,有m ⊥β.(填所选条件的序号)15.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos C +c cos A =b sin B ,则角C 的大小为________.16. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.三、解答题(解答应写出文字说明、证明过程或求解演算步骤)17.(本题满分12分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1, 2a 2+2, 5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.18.(本题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1的中点,F 是AB 的中点,AC =BC =1,AA 1=2.(1)求证:CF ∥平面AB 1E ;(2)求三棱锥C -AB 1E 在底面AB 1E 上的高.19.(本题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫πx 6+π3(0≤x ≤5),点A 、B 分别是函数y =f (x )图象上的最高点和最低点.(1)求点A 、B 的坐标以及OA →·OB →的值;(2)设点A 、B 分别在角α、β的终边上,求tan(α-2β)的值.20.(本题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A 、B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.21.(本题满分12分)已知函数f (x )=ax 2-ln x ,x ∈(0,e],其中e 是自然对数的底数,a ∈R . (1)当a =1时,求函数f (x )的单调区间与极值;(2)是否存在实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,说明理由.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号. 22.(本小题满分10分)选修4—1:几何证明选讲如图所示,锐角三角形ABC 的内心为I,过点A 作直线BI 的垂线,垂足为H,点E 为圆I 与边CA 的切点.(1)求证A,I,H,E 四点共圆;(2)若∠C=50°,求∠IEH 的度数.23.(本小题满分10分)选修4-4:极坐标系与参数方程 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.24.(本小题满分10分)选修4-5:不等式选讲 若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.银川九中2015届高三第五次模拟考试数学(文科)试卷参考答案13. 20 ; 14. ③⑤ , ②⑤ ; 15. π6 ; 16. x 216+y 28=1试题解析:1.D “若a 2+b 2=0,则a =0且b =0”的逆否命题是“若a ≠0或b ≠0,则a 2+b 2≠0”,故选D. 2.A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.3.B 可以通过观察正方体ABCD -A 1B 1C 1D 1进行判断,取BC 1为直线m ,平面ABCD 为平面α,由AB ,CD 均与m 垂直知,选项A 错;由D 1C 1与m 垂直且与α平行知,选项C 错;由平面ADD 1A 1与m 平行且与α垂直知,选项D 错.故选B.4.A 在△ABC 中,a =2R sin A ,b =2R sin B (R 为△ABC 的外接圆半径).∵2a s in B =3b ,∴2sinA sinB =3sin B .∴sin A =32.又△ABC 为锐角三角形,∴A =π3.3,选A.7.A 由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V =10×4×5+9π=200+9π.8.A 由题意得,双曲线的离心率e =ca =3,故ab =22,故双曲线的渐近线方程为y =±22x ,选A.9.B 根据函数y =f (x )是奇函数,当x <0时,f (x )=e (x +1),可知x >0时的解析式为f (x )=-e -x(-x +1),①不正确;函数有三个零点,②不正确;命题③④成立.选B.10.D 由题意得函数f (x )图象的最高点为(3,9),相邻的最低点为(7,5),则A =9-52=2,T2=7-3,,∴T =8,又∵T =2πω,∴ω=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+7,把点(3,9)代入上式,得sin ⎝⎛⎭⎪⎫3π4+φ=1,∵|φ|<π2,∴φ=-π4,则f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7,∴当x =10时,f (10)=2sin ⎝ ⎛⎭⎪⎫π4×10-π4+7=2+7≈8.4.11.C 因为m +n +2=(m +1)+(n +1)表示点A 、B 到准线的距离之和,所以m +n +2表示焦点弦AB 的长度,因为抛物线焦点弦的最小值是其通径的长度,所以m +n +2的最小值为4.12.D 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2b 2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2. ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.13.解析:方法一:a 3+a 8=2a 1+9d =10,3a 5+a 7=4a 1+18d =2(2a 1+9d )=2×10=20.方法二:a 3+a 8=2a 3+5d =10,3a 5+a 7=4a 3+10d =2(2a 3+5d )=2×10=20. 答案: 2014.解析: 由两平面平行的性质,易知由③⑤⇒m ∥β;由②⑤⇒m ⊥β.答案: ③⑤ ②⑤15.解析: ∵m ⊥n ,∴3cos A -sin A =0,∴2sin ⎝⎛⎭⎪⎫π3-A =0,∴A =π3.由余弦定理得,a cos C +c cos A =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc=b .又∵a cos C +c cos A =b sin B ,∴sin B =1,∴B =π2,∴C =π6.答案: π616.解析: 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,解得a =4.又离心率e =c a =22,故c =2 2.所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=118.解析: (1)证明:取AB 1的中点G ,连接EG ,FG ,∵F 、G 分别是AB 、AB 1的中点,∴FG ∥BB 1,FG =12BB 1.∵E 为侧棱CC 1的中点,∴FG ∥EC ,FG =EC , ∴四边形FGEC 是平行四边形,∴CF ∥EG , ∵CF ⊄平面AB 1E ,EG ⊂平面AB 1E ,∴CF ∥平面AB 1E .(2)∵三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∴BB 1⊥平面ABC . 又AC ⊂平面ABC ,∴AC ⊥BB 1,∵∠ACB =90°,∴AC ⊥BC , ∵BB 1∩BC =B ,∴AC ⊥平面EB 1C ,∴AC ⊥CB 1, ∴VA -EB 1C =13S △EB 1C ·AC =13×⎝ ⎛⎭⎪⎫12×1×1×1=16. ∵AE =EB 1=2,AB 1=6,∴S △AB 1E =32, ∵VC -AB 1E =VA -EB 1C ,∴三棱锥C -AB 1E 在底面AB 1E 上的高为3VC -AB 1E S △AB 1E =33.19.解析: (1)∵0≤x ≤5,∴π3≤πx 6+π3≤7π6,∴-12≤sin ⎝ ⎛⎭⎪⎫πx 6+π3≤1. 当πx 6+π3=π2,即x =1时,sin ⎝ ⎛⎭⎪⎫πx 6+π3=1,f (x )取得最大值2;当πx 6+π3=7π6,即x =5时,sin ⎝ ⎛⎭⎪⎫πx 6+π3=-12,f (x )取得最小值-1.因此,点A 、B 的坐标分别是A (1,2)、B (5,-1).∴OA →·OB →=1×5+2×(-1)=3. (2)∵点A (1,2)、B (5,-1)分别在角α、β的终边上, ∴tan α=2,tan β=-15,∵tan 2β=2×⎝ ⎛⎭⎪⎫-151-⎝ ⎛⎭⎪⎫-152=-512,∴tan(α-2β)=2-⎝ ⎛⎭⎪⎫-5121+2·⎝ ⎛⎭⎪⎫-512=292.20.解析: (1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8xx =y +m 得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 1y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍), ∴l 2:x =y +8,M (8,0),故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3y 1+y 22-4y 1y 2=24 5.21.解析: (1)∵f (x )=x 2-ln x ,f ′(x )=2x -1x =2x 2-1x,x ∈(0,e],令f ′(x )>0,得22<x <e , f ′(x )<0,得0<x <22, ∴f (x )的单调增区间是⎣⎢⎡⎦⎥⎤22,e ,单调减区间为⎝⎛⎦⎥⎤0,22.∴f (x )的极小值为f ⎝⎛⎭⎪⎫22=12-ln 22=12+12ln 2.无极大值. (2)假设存在实数a ,使f (x )=ax 2-ln x ,x ∈(0,e]有最小值3, f ′(x )=2ax -1x =2ax 2-1x.①当a ≤0时,x ∈(0,e],所以f ′(x )<0,所以f (x )在(0,e]上单调递减, ∴f (x )min =f (e)=a e 2-1=3,a =4e 2(舍去).②当a >0时,令f ′(x )=0,得x = 12a, (ⅰ)当0<12a <e ,即a >12e 2时,f (x )在⎝⎛⎭⎪⎫0, 12a 上单调递减, 在⎝⎛⎦⎥⎤ 12a ,e 上单调递增,∴f (x )min =f ⎝ ⎛⎭⎪⎫ 12a =12-ln 12a =3,得a =e 52. (ⅱ)当12a ≥e,即0<a ≤12e2时,x ∈(0,e]时,f ′(x )<0, 所以f (x )在(0,e]上单调递减,∴f (x )min =f (e)=a e 2-1=3,a =4e2(舍去),此时f (x )无最小值.综上,存在实数a =e52,使得当x ∈(0,e]时,f (x )有最小值3.22.解:(1)由圆I 与AC 相切于点E 得IE ⊥AC,结合HI ⊥AH,得∠AEI=∠AHI=90°,所以A,I,H,E 四点共圆.(2)由(1)知A,I,H,E 四点共圆,所以∠IEH=∠HAI.由题意知∠HIA=∠ABI+∠BAI=12∠ABC+12∠BAC=12(∠ABC+∠BAC)= 12(180°-∠C)=90°-12∠C,结合IH ⊥AH, 得∠HAI=90°-∠HIA=90°-(90°-12∠C)=12∠C,所以∠IEH=12∠C.由∠C=50°得∠IEH=25°.23.解 法一 (1)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程,得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5, 即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0, 故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2. 法二 (1)同法一.(2)因为圆C 的圆心为(0,5),半径r =5,直线l 的普通方程为:y =-x +3+ 5.由⎩⎨⎧x 2+(y -5)2=5,y =-x +3+5得x 2-3x +2=0.解得:⎩⎨⎧x =1,y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3,5)故|PA |+|PB |=8+2=3 2. 24.解 ∵a ≥x x 2+3x +1=1x +1x+3对任意x >0恒成立,设u =x +1x +3,∴只需a ≥1u恒成立即可.∵x >0,∴u ≥5(当且仅当x =1时取等号). 由u ≥5,知0<1u ≤15,∴a ≥15.。
宁夏银川九中2015届高三第四次月考——理科综合试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第33——40题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,只将答题卡交回。
注意事项:1.答题前,考生在答题卡上先将自己的姓名、准考证号填写清楚,并填涂相应的考号信息点。
2.选择题必须使用2B铅笔填涂;解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔作解答题:字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答题无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
可能用到的相对原子质量:Si-28 Au-197 Cu-64 N-14 O-16第I卷(共126分)一、选择题(本题包括13小题。
每小题6分,共78分,每小题只有一个选项符合题目要求)1.(原创题)下列生物教材中相关实验的描述,正确的是()①.与双缩脲试剂发生紫色反应的物质一定是蛋白质②.探究酵母菌的呼吸方式不能用是否产生CO2来确定③.酒精在脂肪鉴定和观察植物细胞有丝分裂实验中的作用不同,而盐酸在观察DNA和RNA 及观察植物细胞有丝分裂实验中的作用相同。
④.用纸层析法分离菠菜滤液中的色素时,橙黄色的色素带距离所画滤液细线最远A.①③B.②③ C③④ D. ②④2.下列关于细胞及其生命历程的说法错误的是()A.致癌病毒感染人体细胞后,病毒基因能整合到人的基因组中,使原癌基因和抑癌基因突变B.糖被与细胞的保护、识别、免疫和主动运输等功能有关C.细胞凋亡过程中有新的蛋白质合成,这体现了基因的选择性表达D.衰老细胞内染色质固缩,影响DNA复制和转录3.(改编题)下列有关育种的实验分析不正确...的是()A.由⑤×⑥培育出的⑧植株可进行花药离体培养培育出无子番茄B.由③到④的育种过程依据的原理是基因突变C.若③的基因型为AaBbdd,则获得的⑦植株中纯合子约占1/4D.幼苗培育植株⑥的原理是染色体变异4.右图表示细胞内某些重要物质的合成过程。
2015-2016学年宁夏银川九中高三(上)第四次月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分)1.设A={1,4,2x},B={1,x2},若B⊆A,则x=()A.0 B.﹣2 C.0或﹣2 D.0或±22.已知向量=(1,x),=(x,3),若与共线,则||=()A.B.C.2 D.43.已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.94.下列判断正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”C.“sinα=”是“α=”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是““∃x0∈R,2≤0”5.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45 C.36 D.276.在等比数列{a n}中,a3=4,a7=12,则a11=()A.16 B.18 C.36 D.487.直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A.1 B.2 C.4 D.48.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣9.若x,y满足约束条件,则z=x﹣y的最小值是()A.﹣3 B.0 C.D.310.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A.B.C.24 D.4811.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=112.已知函数,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3] D.(2,+∞)二、填空题(本大题共4小题,每小题5分)13.若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.14.已知函数f(x)=ln(1+x)﹣ax的图象在x=1处的切线与直线x+2y﹣1=0平行,则实数a的值为.15.在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e= .16.若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是.三、解答题(解答应写出文字说明、证明过程或求解演算步骤)17.设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)(Ⅰ)求角B的大小;(Ⅱ)若b=,△ABC的面积为,求a+c的值.19.已知数列{a n}满足a1=1,a n+1﹣a n=2,等比数列{b n}满足b1=a1,b4=a4+1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项和S n.20.已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.已知椭圆C的中心在原点,一个焦点为,且长轴长与短轴长的比为.(1)求椭圆C的方程;(2)若椭圆C上在第一象限内的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B.求证:直线AB的斜率为定值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.选修4-1:几何证明选讲22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.选修4-4:极坐标系与参数方程23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.选修4-5:不等式选讲24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.2015-2016学年宁夏银川九中高三(上)第四次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.设A={1,4,2x},B={1,x2},若B⊆A,则x=()A.0 B.﹣2 C.0或﹣2 D.0或±2【考点】集合的包含关系判断及应用.【专题】探究型.【分析】利用条件B⊆A,得到x2=4或x2=2x,求解x之后,利用元素的互异性进行验证求解.【解答】解:∵A={1,4,2x},B={1,x2},若B⊆A,则x2=4或x2=2x,解得x=2或x=﹣2或x=0.当x=2时,集合A={1,4,4}不成立.当x=﹣2时,A={1,4,﹣4},B={1,4},满足条件B⊆A.当x=0时,A={1,4,0},B={1,0},满足条件B⊆A.故x=0或x=﹣2.故选C.【点评】本题主要考查利用集合子集关系确定参数问题,注意求解之后要利用集合元素的互异性进行验证.2.已知向量=(1,x),=(x,3),若与共线,则||=()A.B.C.2 D.4【考点】向量的模.【专题】计算题;数形结合;向量法;平面向量及应用.【分析】由两向量的坐标,根据两向量共线的条件求出x2的值,即可确定出||的值.【解答】解:∵向量=(1,x),=(x,3),且与共线,∴=,即x2=3,则||==2,故选:C.【点评】此题考查了向量的模,两向量共线的条件,熟练掌握两向量共线的条件是解本题的关键.3.已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.4.下列判断正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”C.“sinα=”是“α=”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是““∃x0∈R,2≤0”【考点】命题的真假判断与应用.【专题】规律型;转化思想;简易逻辑.【分析】A.利用复合命题真假的判定方法可得:命题“p∧q”为假命题;B.利用否命题的定义即可判断出真假;C.“α=”⇒“sinα=”,反之不成立,即可判断出真假;D.利用命题的否定即可判断出真假.【解答】解:A.命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,因此不正确;B.“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0”,因此不正确;C.“sinα=”是“α=”的必要不充分条件,因此不正确;D.“∀x∈R,2x>0”的否定是““∃x0∈R,2≤0”,正确.故选:D.【点评】本题考查了简易逻辑的判定、三角函数的求值,考查了推理能力与计算能力,属于中档题.5.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45 C.36 D.27【考点】等差数列的性质.【分析】观察下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,∴S9﹣S6=45∴a7+a8+a9=45故选B.【点评】本题考查等差数列的性质.6.在等比数列{a n}中,a3=4,a7=12,则a11=()A.16 B.18 C.36 D.48【考点】等比数列的通项公式.【专题】方程思想;数学模型法;等差数列与等比数列.【分析】利用等比数列的性质即可得出.【解答】解:由等比数列的性质可得:a11===36.故选:C.【点评】本题考查了等比数列的通项公式与性质,考查了推理能力与计算能力,属于中档题.7.直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A.1 B.2 C.4 D.4【考点】直线与圆的位置关系.【专题】直线与圆.【分析】化圆的方程为标准方程,求出圆的圆心坐标和半径,由点到直线距离公式求出圆心到直线的距离,利用勾股定理求出半弦长,则弦长可求.【解答】解:由x2+y2﹣2x﹣4y=0,得(x﹣1)2+(y﹣2)2=5,所以圆的圆心坐标是C(1,2),半径r=.圆心C到直线x+2y﹣5+=0的距离为d=.所以直线直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为.故选C.【点评】本题考查了直线与圆的位置关系,考查了弦心距、圆的半径及半弦长之间的关系,是基础题.8.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.【解答】解:由题意可得cos===,解得 m=,故选:B.【点评】本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.9.若x,y满足约束条件,则z=x﹣y的最小值是()A.﹣3 B.0 C.D.3【考点】简单线性规划.【专题】计算题.【分析】画出约束条件表示的可行域,推出三角形的三个点的坐标,直接求出z=x﹣y的最小值.【解答】解:约束条件,表示的可行域如图,解得A(0,3),解得B(0,)、解得C(1,1);由A(0,3)、B(0,)、C(1,1);所以t=x﹣y的最大值是1﹣1=0,最小值是0﹣3=﹣3;故选A.【点评】本题考查简单的线性规划的应用,正确画出约束条件的可行域是解题的关键,常考题型.10.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A.B.C.24 D.48【考点】双曲线的简单性质.【专题】计算题.【分析】先由双曲线的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,求出|PF1|=8,|PF2|=6,由此能求出△PF1F2的面积.【解答】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.11.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键.12.已知函数,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3] D.(2,+∞)【考点】分段函数的解析式求法及其图象的作法;函数的单调性及单调区间.【分析】函数f(x)在(﹣∞,+∞)上单调递增,a>1,并且f(x)=(a﹣2)x﹣1,x≤1是增函数,可得a的范围,而且x=1时(a﹣2)x﹣1≤0,求得结果.【解答】解:对数函数在x>1时是增函数,所以a>1,又f(x)=(a﹣2)x﹣1,x≤1是增函数,∴a>2,并且x=1时(a﹣2)x﹣1≤0,即a﹣3≤0,所以2<a≤3故选C【点评】本题考查函数的单调性,分段函数等知识,是基础题.二、填空题(本大题共4小题,每小题5分)13.若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0 .【考点】圆的切线方程;直线与圆的位置关系.【专题】直线与圆.【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即 x+2y﹣5=0,故答案为:x+2y﹣5=0.【点评】本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.14.已知函数f(x)=ln(1+x)﹣ax的图象在x=1处的切线与直线x+2y﹣1=0平行,则实数a的值为 1 .【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】求出原函数的导函数,得到函数在x=1处的导数,由导数值等于﹣求得实数a的值.【解答】解:由f(x)=ln(1+x)﹣ax,得,则.∵函数f(x)=ln(1+x)﹣ax的图象在x=1处的切线与直线x+2y﹣1=0平行,∴,即a=1.故答案为:1.【点评】本题考查了利用导数研究函数在某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值.是中档题.15.在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e= .【考点】椭圆的定义.【专题】计算题;压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是3+2.【考点】直线的截距式方程.【专题】直线与圆.【分析】把点(1,1)代入直线方程,得到=1,然后利用a+b=(a+b)(),展开后利用基本不等式求最值.【解答】解:∵直线l:(a>0,b>0)经过点(1,2)∴=1,∴a+b=(a+b)()=3+≥3+2,当且仅当b=a时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为3+2.故答案为:3+2.【点评】本题考查了直线的截距式方程,考查利用基本不等式求最值,是中档题.三、解答题(解答应写出文字说明、证明过程或求解演算步骤)17.设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.【考点】平面向量数量积的运算;向量的模;两角和与差的正弦函数;正弦函数的单调性.【专题】平面向量及应用.【分析】(1)由条件求得,的值,再根据以及x的范围,可的sinx的值,从而求得x的值.(2)利用两个向量的数量积公式以及三角恒等变换化简函数f(x)的解析式为sin(2x﹣)+.结合x的范围,利用正弦函数的定义域和值域求得f(x)的最大值.【解答】解:(1)由题意可得=+sin2x=4sin2x,=cos2x+sin2x=1,由,可得 4sin2x=1,即sin2x=.∵x∈[0,],∴sinx=,即x=.(2)∵函数=(sinx,sinx)•(cosx,sinx)=sinxcosx+sin2x=sin2x+=sin(2x﹣)+.x∈[0,],∴2x﹣∈[﹣,],∴当2x﹣=,sin(2x﹣)+取得最大值为1+=.【点评】本题主要考查两个向量的数量积的运算,三角函数的恒等变换及化简求值,正弦函数的定义域和值域,属于中档题.18.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)(Ⅰ)求角B的大小;(Ⅱ)若b=,△ABC的面积为,求a+c的值.【考点】余弦定理;正弦定理.【专题】计算题;整体思想;综合法;解三角形.【分析】(Ⅰ)由已知条件和正弦定理化简可得cosB值,结合0<B<π可得;(Ⅱ)由题意和三角形的面积公式可得ac=4,由余弦定理和配方法整体可得.【解答】解:(Ⅰ)∵在△ABC中bcosA=(2c+a)cos(π﹣B),∴由正弦定理可得sinBcosA=2sinC(﹣cosB)+sinA(﹣cosB),∴sinBcosA+sinAcos B=﹣2sinCcosB,∴sin(A+B)=﹣2sinCcosB=sinC,∴,由0<B<π可得;(Ⅱ)∵,∴ac=4,由余弦定理可得b2=a2+c2﹣2accosB=(a+c)2﹣2ac+ac=21,∴(a+c)2=25,∴a+c=5【点评】本题考查解三角形,涉及正余弦定理和三角形的面积公式,属中档题.19.已知数列{a n}满足a1=1,a n+1﹣a n=2,等比数列{b n}满足b1=a1,b4=a4+1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项和S n.【考点】数列的求和;数列递推式.【专题】点列、递归数列与数学归纳法.【分析】(1)通过a1=1、a n+1﹣a n=2可知数列{a n}是首项为1、公差为2的等差数列,进而计算即得结论;(2)通过(1)可知c n=(2n﹣1)•2n﹣1,利用错位相减法计算即得结论.【解答】解:(1)∵a1=1,a n+1﹣a n=2,∴a n=1+2(n﹣1)=2n﹣1,∴b1=a1=1,b4=a4+1=8,∴公比q===2,∴b n=2n﹣1;(2)由(1)可知c n=a n•b n=(2n﹣1)•2n﹣1,∴S n=1•20+3•21+…+(2n﹣1)•2n﹣1,2S n=1•21+3•22+…+(2n﹣3)•2n﹣1+(2n﹣1)•2n,错位相减得:﹣S n=1+2(21+22+…+2n﹣1)﹣(2n﹣1)•2n,∴S n=﹣1﹣2(21+22+…+2n﹣1)+(2n﹣1)•2n=﹣1﹣2•+(2n﹣1)•2n=3+(2n﹣3)•2n.【点评】本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.20.已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】压轴题;导数的综合应用.【分析】(Ⅰ)求导函数,利用导数的几何意义及曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,建立方程,即可求得a,b的值;(Ⅱ)利用导数的正负,可得f(x)的单调性,从而可求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x ﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).【点评】本题考查导数的几何意义,考查函数的单调性与极值,考查学生的计算能力,确定函数的解析式是关键.21.已知椭圆C的中心在原点,一个焦点为,且长轴长与短轴长的比为.(1)求椭圆C的方程;(2)若椭圆C上在第一象限内的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B.求证:直线AB的斜率为定值.【考点】直线与圆锥曲线的综合问题.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)设椭圆C的方程为:,利用焦点为,且长轴长与短轴长的比为,求出a,b,即可得出椭圆C的方程;(2)设出直线PA、PB的方程与椭圆方程联立,求出A,B的坐标,利用斜率公式,即可证明直线AB的斜率为定值.【解答】(1)解:由已知可设椭圆C的方程为:依题意:且a2=b2+2解得:a2=4b2=2故椭圆C的方程为:…(2)证明:由(1)知:P (1,)由已知设PA:,即:PB:,即:…由得:(k2+2)x2﹣2k(k﹣)x+k2﹣2k﹣2=0设A(x1,y1)B(x2,y2)则:故:同理:…直线AB的斜率=所以:直线AB的斜率为定值.…【点评】本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线的斜率公式,考查学生的计算能力,正确运用韦达定理是关键.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.选修4-1:几何证明选讲22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥A B于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.【考点】与圆有关的比例线段.【专题】计算题.【分析】(I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.【解答】解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.选修4-4:极坐标系与参数方程23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【考点】圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.【专题】计算题.【分析】(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解答】解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.【点评】此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.选修4-5:不等式选讲24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【考点】绝对值不等式的解法;函数最值的应用.【专题】计算题;压轴题;分类讨论.【分析】(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得 x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故 m<9.【点评】本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.。
银川市第九中学2015届高三上学期第四次月考理科数学试题1.若复数11iz i-=+,则z 等于( )A .-iB .iC .2iD .1+i2. 如果0,0a b <>,那么,下列不等式中正确的是( )A.11a b<< C.22a b < D.||||a b > 3. 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“β⊥m ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知||=3,||=5,且=12a b ⋅,则向量在向量上的投影为( )A .512B .3C .4D .5 5.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点距离为5,则抛物线方程为( )A. x y 82=B. xy 82-= C. x y 42= D. x y 42-=6.已知曲线1,27)1(,13)0(,)(24=-=-'-='++=x f f bx ax x x f 则曲线在且处切线 的倾斜角为( )A .6π B .-6π C .3π D .4π 7.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98B .97C .96D . 998.在棱长为1的正方体1111D C B A ABCD - 中,M 和N 分别是111BB B A 和中点,那么直线AM 与CN 所成的角的余弦值是( ) A52 B 52- C 53D 10109.若()tan lg 10a α=,1tan lgaβ=,且4παβ+=,则实数a 的值为 ( )A.1B.110C.1或110D.1或1010.若点()1,0A 和点()4,0B 到直线l 的距离依次为1和2,则这样的直线有( ) A.1条 B.2条 C.3条 D.4条11.在ABC ∆中,()︒︒=72cos ,18cos AB ,()︒︒=27cos 2,63cos 2BC ,则ABC ∆面积为( ) A .42 B .22 C .23 D .2 12. 设,x y 满足约束条件360,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩若目标函数(0,z ax by a b =+>>0)的最大值为12,则23a b+的最小值为( ) A .256 B. 83 C. 113D. 4第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22—24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.双曲线2214x y -=的顶点到其渐近线的距离等于.14. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .17 (本题12分)已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在ABC ∆中,内角A,B,C 的对边分别为c b a ,,,已知21)(=A f ,c a b ,,成等差数列,且9=∙,求边a 的值.18.(本题共12分)设数列{}n a 是公比为正数的等比数列,12a =,3212a a -=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:333log log 2n n n b a ⎛⎫=+ ⎪⎝⎭,求数列{}n n a b +的前n 项和n S .19 (本题共12分)如图,在底面是矩形的四棱锥ABCD P -中,PA ⊥平面ABCD ,2==AB PA ,4=BC .E 是PD 的中点,(Ⅰ)求证:平面PDC ⊥平面PAD ; (Ⅱ)求二面角D AC E --的余弦值; (Ⅲ)求直线CD 与平面AEC 所成角的正弦值20.(本题共12分)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率. 21.(本题共12分)已知函数2()()f x x x a =-,2()(1)g x x a x a =-+-+(其中a 为常数); (I )如果函数()y f x =和()y g x =有相同的极值点,求a 的值;(II )设0a >,问是否存在0(1,)3ax ∈-,使得00()()f x g x >,若存在,请求出实数a 的取值范围;若不存在,请说明理由.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4—4:坐标系与参数方程已知在直角坐标系xOy 中,圆C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π. (Ⅰ)写出直线l 的参数方程和圆C 的标准方程;(Ⅱ)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.24. (本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=log 2(|x +1|+|x -2|-m ). (1)当m =5时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥1的解集是R ,求m 的取值范围.银川九中2015届高三第四次模拟考试试卷理科数学答案6013、 14、(x-2)2+(y-1)2=4 15、201 16、8三、解答题:17、(每小题6分,共12分)18、(每小题6分,共12分)18、(每小题4分,共12分)(Ⅲ)延长AE,过D作DG垂直AE于G,连结CG,解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0) , B (2,0,0), C (2,4,0) , D (0,4,0) ,E (0,2,1) , P (0,0,2) .∴=(2,0,0) , AD =(0,4,0) , AP =(0,0,2) , CD =(-2,0,0) ,AE =(0,2,1) , AC =(2,4,0) .(Ⅰ)0=⋅AD CD , AD CD ⊥∴. 又0=⋅ , AP CD ⊥∴ .A AD AP =⋂ ,PAD CD 平面⊥∴,而PDC CD 平面⊂, ∴平面PDC ⊥平面PAD .20、(每小题6分,共12分)21、(每小题6分,共12分)22、(每小题5分,共10分)23、(每小题5分,共10分)24、(每小题5分,共10分)解:(1)由题意知,|x +1|+|x -2|>5,则有⎩⎨⎧ x ≥2,x +1+x -2>5或⎩⎨⎧ -1≤x <2,x +1-x +2>5 或⎩⎨⎧x <-1,-x -1-x +2>5, 解得x <-2或x >3.∴函数f (x )的定义域为(-∞,-2)∪(3,+∞).(2)由对数函数的性质知,f (x )=log 2(|x +1|+|x -2|-m )≥1=log 22,不等式f (x )≥1等价于不等式|x +1|+|x -2|≥2+m ,∵当x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,而不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,故m 的取值范围是(-∞,1].。
宁夏银川九中高三年级第四次月考试卷理科数学 命题人:李淑萍 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22—24题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数11iz i-=+,则z 等于( )A .-iB .iC .2iD .1+i2. 如果0,0a b <>,那么,下列不等式中正确的是( )A.11a b<<22a b < D.||||a b > 3. 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“β⊥m ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知|a |=3,|b |=5,且=12a b ⋅,则向量a 在向量b 上的投影为( )A .512B .3C .4D .55.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点距离为5,则抛物线方程为( )A. x y 82=B. x y 82-=C. x y 42=D. x y 42-=6.已知曲线1,27)1(,13)0(,)(24=-=-'-='++=x f f bx ax x x f 则曲线在且处切线的倾斜角为( )A .6πB .-6π C .3π D .4π 7.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98B .97C .96D . 998.在棱长为1的正方体1111D C B A ABCD - 中,M 和N 分别是111BB B A 和中点,那么直线AM 与CN 所成的角的余弦值是( ) A52 B 52- C 53 D 10109.若()tan lg 10a α=,1tan lgaβ=,且4παβ+=,则实数a 的值为 ( )A.1B.110C.1或110D.1或1010.若点()1,0A 和点()4,0B 到直线l 的距离依次为1和2,则这样的直线有( ) A.1条 B.2条 C.3条 D.4条11.在ABC ∆中,()︒︒=72cos ,18cos ,()︒︒=27cos 2,63cos 2,则ABC ∆面积为( ) A .42B .22 C .23 D .2 12. 设,x y 满足约束条件360,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩若目标函数(0,z ax by a b =+>>0)的最大值为12,则23a b+的最小值为( ) A .256 B. 83 C. 113D. 4第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22—24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.双曲线2214x y -=的顶点到其渐近线的距离等于 .14. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .15. 已知集合{}{}2,1,0,,=c b a ,且下列三个关系:①2≠a ②2=b ③0≠c 有且只有一个正确,则________10100=++c b a .16.某几何体的三视图如图所示,其中正(主)视图与侧(左)视图的边界均为直角三角形,俯视图的边界为直角梯形,则该几何体的体积为 .三、解答题(本大题含6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17 (本题12分)已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在ABC ∆中,内角A,B,C 的对边分别为c b a ,,,已知21)(=A f ,c a b ,,成等差数列,且9=∙,求边a 的值.18.(本题共12分)设数列{}n a 是公比为正数的等比数列,12a =,3212a a -=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:333log log 2n n n b a ⎛⎫=+ ⎪⎝⎭,求数列{}n n a b +的前n 项和n S .19 (本题共12分)如图,在底面是矩形的四棱锥ABCD P -中,PA ⊥平面ABCD ,2==AB PA ,4=BC .E 是PD 的中点,(Ⅰ)求证:平面PDC ⊥平面PAD ; (Ⅱ)求二面角D AC E --的余弦值; (Ⅲ)求直线CD 与平面AEC 所成角的正弦值20.(本题共12分)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率.21.(本题共12分)已知函数2()()f x x x a =-,2()(1)g x x a x a =-+-+(其中a 为常数); (I )如果函数()y f x =和()y g x =有相同的极值点,求a 的值;(II )设0a >,问是否存在0(1,)3ax ∈-,使得00()()f x g x >,若存在,请求出实数a 的取值范围;若不存在,请说明理由.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4—4:坐标系与参数方程 已知在直角坐标系xOy 中,圆C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π. (Ⅰ)写出直线l 的参数方程和圆C 的标准方程;(Ⅱ)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.24. (本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=log 2(|x +1|+|x -2|-m ). (1)当m =5时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥1的解集是R ,求m 的取值范围.银川九中2015届高三第四次模拟考试试卷理科数学答案命题人:李淑萍13、5 14、(x-2)2+(y-1)2=415、201 16、8三、解答题:17、(每小题6分,共12分)18、(每小题6分,共12分)18、(每小题4分,共12分)(Ⅲ)延长AE,过D作DG垂直AE于G,连结CG,解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0) , B (2,0,0), C (2,4,0) , D (0,4,0) ,E (0,2,1) , P (0,0,2) .∴=(2,0,0) , AD =(0,4,0) , AP=(0,0,2) , CD =(-2,0,0) , AE=(0,2,1) , =(2,4,0) .(Ⅰ)0=⋅AD CD , AD CD ⊥∴. 又0=⋅AP CD , AP CD ⊥∴ .A AD AP =⋂ ,PAD CD 平面⊥∴,而PDC CD 平面⊂, ∴平面PDC ⊥平面PAD .20、(每小题6分,共12分)21、(每小题6分,共12分)22、(每小题5分,共10分)23、(每小题5分,共10分)解:(1)由题意知,|x+1|+|x-2|>5,则有⎩⎨⎧ x ≥2,x +1+x -2>5或⎩⎨⎧ -1≤x <2,x +1-x +2>5或⎩⎨⎧ x <-1,-x -1-x +2>5,解得x <-2或x >3.∴函数f (x )的定义域为(-∞,-2)∪(3,+∞).(2)由对数函数的性质知,f (x )=log 2(|x +1|+|x -2|-m )≥1=log 22,不等式f (x )≥1等价于不等式|x +1|+|x -2|≥2+m ,∵当x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,而不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,故m 的取值范围是(-∞,1].。