第5章 matlab 多项式、插值与数据拟合
- 格式:ppt
- 大小:1.40 MB
- 文档页数:84
Matlab中数据处理和多项式插值与曲线拟合⼀、基本统计处理1、查取最⼤值MAX函数的命令格式有:[Y,I]= max (X):将max(X)返回矩阵X的各列中的最⼤元素值及其该元素的位置赋予⾏向量Y与I;当X为向量时,则Y与I为单变量。
[Y,I]=max(X,[],DIM):当DIM=1时按数组X的各列查取其最⼤的元素值及其该元素的位置赋予向量Y与I;当DIM=2时按数组X的各⾏查取其最⼤的元素值及其该元素的位置赋予向量Y与I.max(A,B):返回⼀个与A,B同维的数组,其每⼀个元素是由A,B同位置上的元素的最⼤值组成。
【例1】查找下⾯数列x的最⼤值。
x=[3 5 9 6 1 8] % 产⽣数列xx = 3 5 9 6 1 8y=max(x) % 查出数列x中的最⼤值赋予yy = 9[y,l]=max(x) % 查出数列x中的最⼤值及其该元素的位置赋予y,ly = 9l = 3【例2】分别查找下⾯3×4的⼆维数组x中各列和各⾏元素中的最⼤值。
x=[1 8 4 2;9 6 2 5;3 6 7 1] % 产⽣⼆维数组xx = 1 8 4 29 6 2 53 6 7 1y=max(x) % 查出⼆维数组x中各列元素的最⼤值产⽣赋予⾏向量yy = 9 8 7 5[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 213[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 2132、查取最⼩值MIN函数⽤来查取数据序列的最⼩值。
matlab的数据拟合与插值Matlab 的数据的分析处理-拟合与插值在数学建模过程中,常常需要确定⼀个变量依存于另⼀个或更多的变量的关系,即确定这些变量之间的函数关系。
但在实际中确定这些变量之间函数函数关系时往往没有先验的依据,只能在收集的实际数据的基础上对若⼲合乎理论的形式进⾏试验,从中选择⼀个最有可能反映实际的函数形式,这就是统计学中的拟合和回归⽅程问题。
本节我们主要介绍如何分析处理实际中得到的数据。
下⾯先看⼀个例⼦。
例1 “⼈⼝问题”是我国最⼤社会问题之⼀,估计⼈⼝数量和发展趋势是我们制定⼀系列相关政策的基础。
有⼈⼝统计年鉴,可查到我国从1949年⾄1994⼀般地,我们采⽤下⾯的分析处理⽅法:⾸先,在直⾓坐标系上作出⼈⼝数与年份的散点图象。
观察随着年份的增加⼈⼝数与年份变化关系,初步估计出他们之间的关系可近似地可看做⼀条直线。
那么我们如何把这条直线⽅程确定出来呢?并⽤他来估计1999年我国的⼈⼝数。
⽅法⼀:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)⼆点确定⼀条直线,⽅程为 N = 14.088 t – 26915.842 ,代⼊t =1999,得N ≈12.46亿⽅法⼆:可以多取⼏组点对,确定⼏条直线⽅程,将t = 1999代⼊,分别求出⼈⼝数,在取其算数平值。
⽅法三:可采⽤“最⼩⼆乘法”求出直线⽅程。
这就是曲线拟合的问题。
⽅法⼀与⽅法⼆都具有⼀定的局限性,下⾯我们重点介绍数据的曲线拟合。
所谓曲线拟合是指给定平⾯上的n 个点(x i ,y i ),i=1,2,….,n,找出⼀条曲线使之与这些点相当吻合,这个过程称之为曲线拟合。
最常见的曲线拟合是使⽤多项式来作拟合曲线。
曲线拟合最常⽤的⽅法是最⼩⼆乘法。
其原理是求f(x),使21])([i ni i y x f -=∑=δ达到最⼩。
matlab 提供了基本的多项式曲线拟合函数命令polyfit格式::polyfit(x,y,n)说明:polyfit(x,y,n)是找n 次多项式p(x)的系数,这些系数满⾜在最⼩⼆乘法意义下p(x(i)) ~= y(i).已知⼀组数据,⽤什么样的曲线拟合最好呢?可以根据散点图进⾏直观观察,在此基础上,选择⼏种曲线分别拟合,然后⽐较,观察那条曲线的最⼩⼆乘指标最⼩。
13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。
插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。
1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。
2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。
插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。
区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。
【拟合】要求得到一个具体的近似函数的表达式。
因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。
当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。
一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。
注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。
例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。
matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。
插值是通过创建新的数据点来填充在已知数据点之间的空白。
MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。
具体使用哪种插值方法取决于数据的特性和所需的精度。
插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。
拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。
在MATLAB中,可以使用`polyfit`函数进行多项式拟合。
该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。
该函数返回一个向量`p`,表示多项式的系数。
可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。
需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。
因此,选择合适的插值和拟合方法是非常重要的。
目录【一维插值】interp1 (1)yi = interp1(x,y,xi,method) (1)例1 (1)例2 (2)【二维插值】interp2 (4)ZI = interp2(X,Y,Z,XI,YI,method) (4)插值方式比较示例 (4)例3 (8)例4 (9)【三角测量和分散数据插值】 (13)【数据拟合】 (17)例5 (17)例6 (18)【一维插值】interp1yi = interp1(x,y,xi,method)例1在1-12 的11 小时内,每隔1 小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。
试估计每隔1/10 小时的温度值。
建立M文件temp.mhours=1:12;temps=[5 8 9 15 25 29 31 30 22 25 27 24];h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'kp',h,t,'b');35302520151050 2 4 6 8 10 12例2已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。
X0357911 12131415 Y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6建立M文件plane.mx0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y1=interp1(x0,y0,x,'nearest');y2=interp1(x0,y0,x);y3=interp1(x0,y0,x,'spline');plot(x0,y0,'kp',x,y1,'r')2.521.510.50 5 10 15 plot(x0,y0,'kp',x,y2,'r')2.521.510.50 5 10 15 plot(x0,y0,'kp',x,y3,'r')2.521.510.50 5 10 15 【二维插值】interp2ZI = interp2(X,Y,Z,XI,YI,method)插值方式比较示例用较大间隔产生peaks 函数数据点[x,y] = meshgrid(-3:1:3);z = peaks(x,y);surf(x,y,z)642-2-4-642 40 2-2 -2-4 -4●产生一个较好的网格[xi,yi] = meshgrid(-3:0.25:3);●利用最近邻方式插值zi1 = interp2(x,y,z,xi,yi,'nearest');surf(xi,yi,zi1)●双线性插值方式zi2 = interp2(x,y,z,xi,yi,'bilinear');surf(xi,yi,zi2)●双立方插值方式zi3 = interp2(x,y,z,xi,yi,'bicubic');surf(xi,yi,zi3)●不同插值方式构造的等高线图对比contour(xi,yi,zi1)321-1-2-3-3 -2 -1 0 1 2 3 contour(xi,yi,zi2)321-1-2-3-3 -2 -1 0 1 2 3 contour(xi,yi,zi3)321-1-2-3-3 -2 -1 0 1 2 3例3测得平板表面3*5 网格点处的温度分别为:82 81 80 82 8479 63 61 65 8184 84 82 85 86试作出平板表面的温度分布曲面z=f(x,y)的图形。
计算可视化
1 插值与数据拟合 1.1 一维数据的插值问题 1.1.1 一维插值问题的求解
例1-1:已知的数据点来自函数25f ()(35)sin x x x x e x -=-+,根据生成的数据进行插值处理,得出较平滑的曲线直接生成数据。
例1-2:编写一段程序,允许利用插值方法手工绘制一条光滑的曲线。
1.1.2 Lagrange插值算法及应用
例1-3:对2()1/(125),11f x x x =+-≤≤进行Lagrange 插值。
1.2 已知样本点的定积分计算
例1-4:利用样条插值算法求解3/2
cos(15)x dx π⎰。
例1-5:已知其中的150个数据点,用quadspln()计算出该定积分的值
2
()x
t erf x e dt -=
⎰。
1.3 二维网格数据的插值问题
例1-6:由2
22(,)(2)x
y xy
z f x y x x e ---==-可计算出一些较稀疏的网格数据,对整
1.4 二维一般分布数据的插值问题1.5 高维插值问题。
Matlab中的插值与拟合技术在科学研究和工程领域中,数据的插值和拟合技术在数值计算和数据处理中具有重要意义。
Matlab作为一款强大的科学计算软件,提供了丰富的插值和拟合函数和工具箱,能够满足不同场景下的需求。
插值是一种通过已知数据点构建新数据点的技术。
在实际问题中,我们经常会遇到仅有少量已知数据点,但需要了解未知数据点的情况。
插值技术就可以帮助我们填补数据之间的空缺,以便更好地分析和理解数据。
Matlab中提供了多种插值函数,包括线性插值、多项式插值、样条插值等。
这些函数能够根据已知数据点的特征,推测出未知数据点的可能取值。
通过合理选择插值方法和参数,我们可以得到较为准确的结果。
以线性插值为例,其原理是根据已知数据点的直线特征,推测出未知数据点的取值。
在Matlab中,我们可以使用interp1函数实现线性插值。
该函数的基本用法是给定一组x和对应的y值,以及待插值的点xq,函数将计算出对应的插值点yq。
通过指定xq的形式,我们可以实现不仅仅是单个点的插值,还可以实现多点插值和插值曲线绘制。
这种灵活性使得插值操作更加方便快捷。
拟合技术则是通过一定数学函数的近似表示,来描述已知数据的特征。
它可以帮助我们找到数据背后的规律和趋势,从而更好地预测未知数据。
在Matlab中,拟合问题可以通过polyfit和polyval函数来解决。
polyfit函数可以根据一组已知数据点,拟合出最优的多项式曲线。
该函数的输入参数包括x和y,代表已知数据的横纵坐标值;以及n,代表拟合的多项式次数。
polyfit函数将返回拟合得到的多项式系数。
通过polyval函数,我们可以使用这些系数来求解拟合曲线的纵坐标值。
这样,我们就能够利用拟合曲线来预测未知数据点。
插值和拟合技术在实际问题中都有广泛的应用,尤其在数据处理和信号处理方面。
例如,当我们在实验中测量一组数据时,可能会存在测量误差或者数据缺失的情况。
此时,通过插值技术我们可以填补数据之间的空白,并得到一个更加完整的数据集。
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。
Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。
本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。
一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。
在Matlab中,可以使用interp1函数进行一维线性插值。
下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。
通过interp1函数,可以得到插值结果yi=5。
线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。
2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。
在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。
以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。
三次样条插值适用于数据点较多且变化较为复杂的情况。
3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。
以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。
插值与拟合matlab实现插值与拟合的Matlab实现王正盛编写在科技工程中,除了要进行一定的理论分析外,通过实验、观测数据,做分析、处理也是必不可少的一种途径。
由于实验测定实际系统的数据具有一定的代表性,因此在处理时必须充分利用这些信息;又由于测定过程中不可避免会产生误差,故在分析经验公式时又必须考虑这些误差的影响。
两者相互制约。
据此合理建立实际系统数学模型的方法成为数值逼近法。
一、插值法1、数学原理工程实践和科学实验中,常常需要从一组实验观测数据中,求自变量与因变量的一个近似的函数关系式。
例如:观测行星的运动,只能得到某时刻所对应的行星位置(用经纬度表示),想知道任何时刻的行星位置。
例如:大气压测定问题;导弹发射问题;程序控制铣床加工精密工件问题;飞机船舶制造问题等等。
都属于此类问题。
因为考虑到代数多项式既简单又便于计算,所以人们就用代数多项式近似地表示满足个点的函数关系式——插值法建模。
(1)计算方法课程中学习了两种多项式插值:Lagrange插值和Newton均差插值:已知n+1个数据点:n次Lagrange插值公式:特别地,当n=1时,————线性插值当n=2时,———————抛物线插值或二次插值Newton均差插值公式:,其中是k阶均差,可由均差表方便计算得到。
Lagrange插值和Newton均差插值本质上是一样的,只是形式不同而已,因为插值多项式是唯一的。
(2)Runge现象和分段低次插值:如在[-5,5]上各阶导数存在,但在此区间取n个节点构造的Lagrange插值多项式在区间并非都收敛,而且分散得很厉害。
(matlab\bin\ Lagrange.m是自己编写的M文件)[例]取n=-10hold offx=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.1:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0)hold onplot(x0,y1,'b:')legend('插值曲线','原数据曲线')因此插值多项式一般不要超过四次为宜。
MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。
这种问题的解决方法通常可以分为两种:插值和拟合。
插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。
插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。
拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。
MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。
接下来我们将详细介绍MATLAB中常用的插值和拟合方法。
篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。
1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。
在MATLAB中,可以使用interp1函数来进行线性插值的计算。
该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。
2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。
MATLAB中的polyfit函数可以用来进行多项式的拟合计算。
这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。
3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。
样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。
篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。
1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。
在MATLAB中,可以使用polyfit函数来进行线性拟合计算。